
Great Time to Learn GTL
Kriss Harris, SAS Specialists Limited; Richann Watson, DataRich Consulting

ABSTRACT
It’s a Great Time to Learn GTL! Do you want to be more confident when producing GTL graphs? Do you
want to know how to layer your graphs using the OVERLAY layout and build upon your graphs using
multiple LAYOUT statement? This paper guides you through the GTL fundamentals!

INTRODUCTION
GTL is part of the ODS Graphics software that is utilized by several SAS procedures. Although these
SAS procedures (e.g., the SGPLOT procedure) have pre-defined graph templates which produce
outstanding graphs, they may not produce the type of output that is desired. There may be times when
several of the features in the pre-defined graph templates need to be modified in order to produce the
desired output. GTL will allow the user to modify features for graphs that are based on pre-defined
templates, and it will allow users to create graphs that cannot be produced from a pre-defined template.
In addition, GTL makes it easier to incorporate features, such as embedding a table of data or displaying
different graphs on the same page, that may have been difficult to incorporate previously. Furthermore,
ODS Graphics is part of Base SAS and therefore does not require the installation of SAS/GRAPH. These
are just some of the reasons to learn GTL. However, if those are not sufficient reasons, then according to
Matange (2013, p. 5) some additional reasons to learn GTL are:

• GTL provides in one system the full set of features that you need to create graphs from the simplest
scatter plots to complex diagnostics panels.

• GTL is the language used to create the templates shipped by SAS for the creation of the automatic
graphs from the analytical procedures. To customize one of these graphs, you will need to
understand GTL.

• GTL represents the future for analytical graphics in SAS. New features are being added to GTL with
every SAS release.

The data set used in this paper is from the CDISC SDTM / ADaM Pilot Project and this was obtained from
the CDISC website (CDISC, 2013).

THE BASICS
To start using GTL, you need to first understand the basics. We talk about the different types of layouts
and illustrate some simple graphs with some slight modifications.

LAYOUTS

Types
Within GTL there are several layouts. These layouts can be classified into one of 3 categories: single cell,
multi-cell pre-defined and multi-cell data-driven. Within each type, there are various other layouts that will
help further refine what type of display is needed.

• Single cell: A graph which uses the entire graphing area (Display 1)

o OVERLAY: General layout with 2-D plots

o OVERLAYEQUATED: Overlay with equated axes

o PROTOTYPE: Specialized, used with DATAPANEL or DATALATTICE only

o REGION: General plot with no axes

o OVERLAY3D: General layout with 3-D plots

Great Time to Learn GTL, continued

2

• Multi-cell (cells must be pre-defined): A graph that breaks the graphing area into pre-defined portions

so that each portion represents different pieces of information (Display 2)

o GRIDDED: multi-cell plots have the same proportion in regard to height and width

o LATTICE: very flexible which allow each cell to have different heights and widths

Both GRIDDED and LATTICE can be used along with OVERLAY. With these two layouts

other types of layouts can be nested within each cell.

• Multi-cell Data-driven (2-D: Panels of similar graphs based on data classification variables): A graph

that breaks the graphing area into as many parts necessary based on the data (Display 2)

o DATAPANEL: Number of cells based on crossings of n classification variables

o DATALATTICE: Number of cells based on crossings of 1 or 2 classification variables.

o Both DATAPANEL and DATALATTICE need to use the PROTOTYPE layout.

Display 1. Single Cell Illustration

Display 2. Multi-Cell Illustration

Understanding these layouts mean and how they can be utilized to produce a graph is a key part of the
use of GTL. The desired output will determine what layout should be used.

General Syntax
Regardless of the type of layout selected, each layout is initiated with LAYOUT and terminated with
ENDLAYOUT.

The syntax for OVERLAY and GRIDDED is similar but will have varying options.

layout type </options>;

 …

endlayout;

The syntax for LATTICE has some added components which will allow for either different axes for each
portion of the graph or allow for sharing of axes. By default, LATTICE creates axes that are determined
by plots in each cell. However, if you want to have uniform axes the COLUMNDATARANGE and
ROWDATARANGE options on the layout statement can be utilized. Further control of axes, can be done
by specifying COLUMNAXES and COLUMN2AXES to control the X and X2 axes, respectively and
ROWAXES and ROW2AXES to control the Y and Y2 axes. However, if all parts of the graph are to have
the same axes, then only one set of axes statements would need to be defined.

layout LATTICE </options>;

 …

 <columnaxes </options>;

 columnaxis / axis-option(s);

 …

 endcolumnaxes;>

 <column2axes </options>;

SINGLE CELL

MULTI-CELL 1 MULTI-CELL 2

MULTI-CELL 3

Great Time to Learn GTL, continued

3

columnaxis / axis-option(s);

 …

 endcolumn2axes;>

 <rowaxes </options>;

rowaxis / axis-option(s);

 …

 endrowaxes;>

 <row2axes </options>;

rowaxis / axis-option(s);

 …

 endrow2axes;>

 <columnheaders;

 …

 endcolumnheaders;>

 <sidebar </options>;

 endsidebar;>

endlayout;

PLOTS
There are a variety of plots to choose from. Each plot will have its own syntax (Table 1) and own set of
options (Table 2) available to it.

PLOT SYNTAX
BARCHART BARCHART CATEGORY = column | expression </option(s)>;

BARCHART CATEGORY = column | expression
 RESPONSE = numeric-column | expression </option(s)>;

BOXPLOT BOXPLOT Y = numeric-column | expression </option(s)>;

BOXPLOT X = column | expression
 Y = numeric-column | expression </option(s)>;

SCATTERPLOT SCATTERPLOT X = column | expression
 Y = column | expression </option(s)>;

Table 1. Syntax for Select Plots

Great Time to Learn GTL, continued

4

OPTION ALLOWED VALUES BARCHART BOXPLOT SCATTERPLOT
APPEARANCE

BARWIDTH number ✓

BOXWIDTH number ✓

CAPSHAPE SERIF| LINE | BRACKET |
NONE

 ✓

CLUSTERWIDTH number ✓ ✓ ✓

COLORBYFREQ TRUE | FALSE ✓

COLORMODEL * color-ramp-style-element |
(color-list)
** style-element | (color-list)

✓* ✓**

COLORRESPONSE numeric-column | range-attr-var
| expression ✓ ✓

DATASKIN NONE | CRISP | GLOSS |
MATTE | PRESSED | SHEEN ✓ ✓ ✓

DATATRANSPARENCY number ✓ ✓ ✓

DISCRETEMARKERSIZE number ✓

DISPLAY STANDARD | ALL | (display-
options)

✓ ✓

EXTREME TRUE | FALSE ✓

MARKERATTRS style-element | style-element
(marker-options) | (marker-
options)

 ✓

AXIS
XAXIS X | X2 ✓ ✓ ✓

YAXIS Y | Y2 ✓ ✓ ✓

LABEL
BARLABEL TRUE | FALSE ✓

BARLABELATTRS style-element | style-element
(text-options) | (text-options) ✓

BARLABELFITPOLICY AUTO | NONE ✓

BARLABELFORMAT format ✓

DATALABEL * column
** column | expression ✓* ✓**

DATALABELATTRS style-element | style-element
(text-options) | (text-options) ✓ ✓

DATALABELPOSITION AUTO | TOPRIGHT | TOP |
TOPLEFT | LEFT | CENTER |
RIGHT | BOTTOMLEFT |
BOTTOM | BOTTOMRIGHT

✓

DATALABELSPLIT TRUE | FALSE ✓ ✓

DATALABELSPLITCHAR "character-list" ✓ ✓

LEGENDLABEL "string" ✓ ✓ ✓

Table 2. Sample of Options Available for Select Plots
For a complete list of plots and all features available visit Plot Statements → Plot Statements at
http://support.sas.com/documentation/cdl/en/grstatgraph/69718/HTML/default/viewer.htm#p1rdkldsdjjotln
1v88o3rdglyb7.htm.

http://support.sas.com/documentation/cdl/en/grstatgraph/69718/HTML/default/viewer.htm#p1rdkldsdjjotln1v88o3rdglyb7.htm
http://support.sas.com/documentation/cdl/en/grstatgraph/69718/HTML/default/viewer.htm#p1rdkldsdjjotln1v88o3rdglyb7.htm

Great Time to Learn GTL, continued

5

HOW DOES GTL COMPARE TO SG PROCEDURES?
If you have used SGPLOT, then you are part way there to understanding the GTL syntax. There are
some differences in syntax which are illustrated using a few common types of plots in Table 3. In
addition, there are some subtle differences in the more common options used as show in Table 4.

In these examples, one of the main differences is the use of an argument named expression. Expression
allows you to plot data that is not found in the data set. For example, in your plot statement instead of
specifying that the variable X = column_x (a variable in your data set), you could use an expression to
specify that X is column_x + 5, which could be done by using the syntax X = eval(column_x + 5). For
details on the utilization of an expression on a plot statement please refer to Harris, 2017, p. 8, 13.

PLOTS GTL SYNTAX SGPLOT SYNTAX
Scatter Plot SCATTERPLOT X = column | expression

 Y = column | expression </option(s)>;
SCATTER X=variable
 Y = variable </option(s)>

Series Plot SERIESPLOT X = column | expression
 Y = column | expression </option(s)>;

SERIES X = variable
 Y = variable </option(s)>

Table 3. Examples of Comparisons Between Plot Statements in SGPLOT and GTL with Similarities
OPTIONS GTL SYNTAX SGPLOT SYNTAX
Change x-axis
label

XAXISOPTS = (label = "New Label") XAXIS label = "New Label";

Change y-axis
range

YAXISOPTS = (linearopts = (viewmin = 0
 viewmax = 100))

YAXIS min = 0
 max = 0;

Specify tick values YAXISOPTS = (linearopts = (tickvaluesequence =
 (start=0
 end=0
 increment=10)))

YAXIS values = (0 to 100 by 10);

Table 4. Examples of Comparisons Between Options in SGPLOT and GTL
Although these are simple examples that illustrate the similarities between SGPLOT and GTL not all plots
will have the same ease of transference of syntax as demonstrated in Table 5.

With some plots there will be more options to choose from and these options could be based on
orientation (i.e., portrait or landscape) or what type of layout is used (e.g., DATAPANEL or
DATALATTICE).

PLOT GTL SYNTAX SGPLOT SYNTAX
BARCHART BARCHART CATEGORY = column | expression </option(s)>;

BARCHART CATEGORY = column | expression
 RESPONSE = numeric-column | expression
</option(s)>;

BARCHARTPARM CATEGORY = column | expression
RESPONSE=numeric-column | expression </option(s)>;

VBAR category-variable </option(s)>

BOXPLOT BOXPLOT Y = numeric-column | expression </option(s)>;

BOXPLOT X = column | expression
 Y = numeric-column | expression </option(s)>;

BOXPLOTPARM Y = numeric-column | expression

 STAT = string-column </option(s)>;

BOXPLOTPARM X = column | expression

 Y = numeric-column | expression

 STAT = string-column </option(s)>;

VBOX analysis-variable </option(s)>

Great Time to Learn GTL, continued

6

Table 5. Examples of Comparisons Between Plot Statements in SGPLOT and GTL without Similarities

USING GTL TO CREATE A GRAPH
Matange (2013, p. 11) points out that using GTL to create a graph is a two-step process:

1. First you need to define the structure of the graph using the STATGRAPH template. In the

creation of the template, no graph is actually produced.

2. Second you need to associate the data in order to render the template which will produce the

graph.

1. DEFINE THE TEMPLATE
All templates will have the following structure.

proc template;

 define statgraph templatename;
 begingraph / <options>;

 layout type / <options>;

… GTL SAS code …

 endlayout;

 endgraph;

 end;

run;

Define the structure of the graph by creating a custom template. Defining a custom template is done
using STATGRAPH and providing a template name (templatename). The template name is used when
rendering the graph. This statement has a corresponding END.

Each custom template definition has at most one BEGINGRAPH, which is the signal that indicates the
various components of the custom template are specified within the block. BEGINGRAPH has a
corresponding ENDGRAPH, which signals the end of the graph template definition.

Within each custom template, the layout(s) are specified along with the necessary options using the
LAYOUT statement. For each LAYOUT specified a corresponding ENDLAYOUT needs to be used to
signal the end of that particular layout. Note that it is possible to nest layouts depending on the type of
layout.

Within each LAYOUT block, the required plot statement(s) and options are specified. Depending on the
type of layout(s) and plot(s) will drive how this portion is programmed.

2. PRODUCE THE GRAPH
As Matange indicated, using GTL is a two-step process. In the second step, SGRENDER is used to
associate the data that will be used with the custom template that is defined in step 1. Any data can be
associated with the template as long as all the components (i.e., variables) defined in the template reside
in the data set. Syntax for SGRENDER

proc sgrender data = datasetname template = templatename;

 <optional SAS statements>;

run;

Some examples of other SAS statements that can be incorporated are:

• BY statement to allow rendering by different groups.

• FORMAT statement to allow data to be formatted without losing the order of the data.

• LABEL statement to allow x and y-axis labels to be defined if they are not defined in the template.

1

2

3

4

1 2 3 4

Great Time to Learn GTL, continued

7

EXAMPLE
Using data from CDISC SDTM / ADaM Pilot Project, we illustrate how easy it is to produce a graph. In
this example, we illustrate two ways to produce a barchart by treatment with the statistics displayed
above each bar. In addition, we want the graph to contain a table with comparison statistics and a trend
test. Figure 1 illustrates the graph that needs to be produced.

SINGLE CELL LAYOUT WITH NESTED LAYOUT

Figure 1. Bar Chart with Embedded Table Using GRIDDED Layout Nested in OVERLAY Layout

In this specific layout it is evident that there is only one cell in the graph area. Although it may at first
seem like there is more than one portion of the graph, in reality there is only one portion. This is evident
by looking at the y-axis. The embedded table is contained within the 75-100% portion of the barchart.
This approach uses a single cell layout (OVERLAY) but has a nested layout (GRIDDED) within it. The
outer layout will contain the necessary statements to produce the main portion of the graph (i.e., the bar
chart) and the inner layout will contain the necessary statements to embed the table within the bar chart
graph area. Refer to SAS Program 1 for complete code and explanation of the various options.

Great Time to Learn GTL, continued

8

proc template;

 define statgraph recrgrphg;

 /* indicate the macro variables that will be used to create the inset table */

 mvar valuechi054 pchi054 valuechi081 pchi081 cmstat cmpvalue;

 begingraph / border = false;

 /* need to force the y-axis to display up through */

 /* 100 in order for the table to be displayed */

 layout overlay / xaxisopts = (label = " "

 type = discrete)

 yaxisopts = (label = "Percentage of Patients with

 Dermatologic Event (%)"

 linearopts = (tickvaluesequence =

 (start=0 end=100 increment=25)

 viewmin=0 viewmax=100));

 /* create the vertical bar charts for each treatment group */

 barchart x = TRTAN y = PCT_ROW / orient = vertical barlabel = true;

 /* portion to embed table – to be placed at the top */

 /* order = rowmajor indicates that the grid will be filled out */

 /* in row order so each column in the row will be populated */

 /* prior to moving onto the next row */

 layout gridded / columns = 4

 order = rowmajor

 autoalign = (top);

 entry "Pearson's Chi-square Test Results";

 entry " ";

 entry " ";

 entry "Cochran-Armitage Trend Test Results";

 entry " Treatment Comparison";

 entry "Value";

 entry "P-value";

 entry " Value = " cmstat;

 entry " Placebo - Low Dose";

 entry valuechi054;

 entry pchi054;

 entry "P-value = " cmpvalue;

 entry " Placebo - High Dose";

 entry valuechi081;

 entry pchi081;

 endlayout;

 endlayout;

 endgraph;

 end;

 run;

proc sgrender data = PCT template = recrgrphg;

 format TRTAN trt. PCT_ROW pctfmt.;

run;

SAS Program 1. PROC TEMPLATE to Produce Bar Chart with an Embedded Table Using GRIDDED
Layout Nested in OVERLAY Layout
Since the values of the statistics in the embedded table can vary based on the data source, it may be
beneficial to store the values within a macro variable. When using macro variables within the template
then the MVAR or MVARN statement should be used. Macro variables that are declared using MVAR will
resolve to a string where macro variables declared with MVARN will convert to a numeric token. The use
of MVAR(N) allows the macro variable to be resolved at execution rather than a compile time like it would

1

1

4

2

3

5

Great Time to Learn GTL, continued

9

be if the ampersand (&) is used. This allows the template to be defined prior the macro variables being
defined.

Within each type of layout there are various options. For this example, we illustrate some options
associated with the axes. For the x-axis, we indicate the data is discrete and that we do not want a label
associated with the variable to be displayed. For the y-axis, we want to display a specific label instead of
the label associated with the variable. In addition, we want to force the y-axis to go from 0 to 100 in
increments of 25 regardless of what the data produces. Furthermore, the VIEWMIN and VIEWMAX
options are used to indicate that only data within that range should be displayed. Since this example is
for percentages, these options could be eliminated. However, these options are beneficial when there is
a possibility for data to have outliers and you want to eliminate the outliers from showing on the graph.
This does not change the data it just changes what was displayed.

Within the OVERLAY layout, the necessary plot statement along with the necessary options is specified
to build the bar chart. For this example, we want the bars to be vertical and we want each bar to be
labelled with the value.

Nesting the GRIDDED layout within the OVERLAY allows the table to be embedded directly into the
graph area. Defining the number of columns and specifying the order in which the grid will be filled out will
produce the desired table within the graph. Using our example, the grid will be filled out in row order so
that each of the four columns is filled out prior to moving to the next row. Each portion of the table is then
entered as an entry. If a specific cell in the table should be left null, then a blank entry line should be
created so that when the template is rendered it will not populate that particular cell in the table. For
example, entry " Value = " cmstat; is displayed on the second row, fourth column; while

entry valuechi054; and entry pchi054; are on the third row, third entry and fourth entry

respectively.

When the graph is rendered, the order of the treatment groups is important so rather than using the
character version of the treatment values, the treatment groups are assigned a numeric counterpart and
then a format is applied to the numeric value to display the actual treatment. In addition, a format was
applied to the percent value so that it would display with the percent sign. Error! Reference source not
found.Figure 1 shows the rendering of the code in SAS Program 1.

MULTI-CELL LAYOUT USING LATTICE AND INDIVIDUAL LAYOUTS WITHIN EACH CELL
What if some of the percentages in the bar chart are more than 75% and there is no space within the
single-cell layout to embed the table, then an alternative approach needs to be considered. By splitting
the graph area into multiple cells, will allow the bar chart to be displayed up through 100% if necessary as
well as display the necessary statistics.

4

2

3

5

Great Time to Learn GTL, continued

10

Figure 2. Bar Chart by Treatment with Embedded Table Using LATTICE Layout and Individual
Layouts Within Each Cell

proc template;

 define statgraph recrgrph;

 /* indicate the macro variables that will be used to create the inset table */

 mvar valuechi054 pchi054 valuechi081 pchi081 cmstat cmpvalue;

 begingraph / border = false;

 layout lattice / rows = 2 rowweights = (0.2 0.8);

 layout overlay / yaxisopts=(display=none) yaxisopts=(display=none);

 /* portion to embed table – 4 columns entered in row order */

 layout gridded / columns = 4

 order = rowmajor

 autoalign = (top);

 entry "Pearson's Chi-square Test Results";

 entry " ";

 entry " ";

 entry "Cochran-Armitage Trend Test Results";

 entry " Treatment Comparison";

 entry "Value";

 entry "P-value";

 entry " Value = " cmstat;

 entry " Placebo - Low Dose";

 entry valuechi054;

 entry pchi054;

 entry "P-value = " cmpvalue;

 entry " Placebo - High Dose";

 entry valuechi081;

 entry pchi081;

 endlayout;

 endlayout;

1

2

Great Time to Learn GTL, continued

11

 layout overlay / xaxisopts = (label = " " type = discrete)

 yaxisopts = (labelsplitchar="#"

 labelfitpolicy=splitalways

 label = "Percentage of Patients with

Dermatologic#Event (%)"

 linearopts = (tickvaluesequence =

 (start = 0 end = 100

 increment = 25)

 viewmin = 0 viewmax =100));

 /* create the vertical bar charts for each treatment group */

 barchart x = TRTAN y = PCT_ROW / orient = vertical barlabel = true;

 endlayout;

 endlayout;

 endgraph;

 end;

run;

SAS Program 2. PROC TEMPLATE to Produce a Bar Chart by Treatment with an Embedded Table
Using LATTICE Layout and Individual Layouts Within Each Cell
LATTICE allows you to split area into rows or columns or a combination of rows and columns based on
the desired output. For our example, we split graph area into two portions by rows with the first row being
20% of area and the second row is 80%.

With the table being the top portion of the graph, layout for the table is specified first and will be displayed
in the 20% of the graph area. The syntax is the same as it is in the single-cell layout example. The
difference is that the GRIDDED layout is nested within the LATTICE layout and not the OVERLAY layout.

The bar chart will be displayed in the 80% of the graph area. The syntax is the same as it is in the single-
cell layout example with the nested GRIDDED layout removed.

Since the area specified for the bar chart is smaller than the one in the single-cell layout the label may not
fit, thus we introduce the use of the LABELFITPOLICY option. This will indicate how the label should be
displayed if it does not fit in the allotted space. The default option is AUTO which indicates that if a short
label is provided and will fit within the allotted space then the short label will be used; otherwise the short
label if provided is clipped and if the short label is not provided the original label is clipped. If
LABELFITPOLICY = SPLITALWAYS then the label will always be split when it encounters a split
character. Therefore, LABELSPLITCHAR needs to be specified to indicate what the split character is.
Note that the default for LABELSPLITCHAR is a blank space, therefore, when LABELFITPOLICY =
SPLITALWAYS it is necessary to specify the non-blank split character. For our example, we used
LABELFITPOLICY = SPLITALWAYS which indicates that the label will be split when it encounters the
specified split character. Note that the LABELFITPOLICY is only effective when LABELPOSITION is
CENTER or DATACENTER. The default for LABELPOSITION is CENTER.

CONCLUSION
There are many types of plots with various types of options. The types of graphs that can be produced
are limitless. We only discussed a very small portion of what GTL is capable of. But with the tools to see
how a graph can be broken down into different pieces, and then combined together to create the final
output can make a task that may have at one time seem impossible, possible.

REFERENCES
Graph Template Language Tip Sheet. (2018, 03 13). Retrieved from
https://support.sas.com/rnd/app/ODSGraphics/TipSheet_GTL.pdf

Graph Template Modification Tip Sheet. (2018, 03 13). Retrieved from
https://support.sas.com/rnd/app/ODSGraphics/TipSheet_GraphTemplateModification.pdf

4

4

1

2

3

3

Great Time to Learn GTL, continued

12

Harris, K. (2017). Hands-on Graph Template Language: Part B . SAS Global Forum 2017. Orlando: SAS
Global Forum.

Available at http://support.sas.com/resources/papers/proceedings17/0864-2017.pdf

Matange, Sanjay. Getting Started with the Graph Template Language in SAS®, SAS Institute (SAS
Press, 2013).

SAS® 9.4 Graph Template Language: Reference, Fifth Edition. (2018, 03 13). Retrieved from
http://documentation.sas.com/?docsetId=grstatgraph&docsetTarget=p1rdkldsdjjotln1v88o3rdglyb7.htm&d
ocsetVersion=9.4&locale=en

SAS® 9.4 Graph Template Language: User’s Guide, Fifth Edition. (2018, 03 13). Retrieved from
http://documentation.sas.com/?docsetId=grstatug&docsetTarget=titlepage.htm&docsetVersion=9.4&local
e=en

RECOMMENDED READINGS

Matange, Sanjay. Getting Started with the Graph Template Language in SAS®, SAS Institute (SAS
Press, 2013).

Matange, Sanjay. Clinical Graphs Using SAS®, SAS Institute (SAS Press, 2016).

Kuhfeld, Warren. Basic ODS Graphics Examples. Free download,
http://support.sas.com/documentation/prod-p/grstat/9.4/en/PDF/odsbasicg.pdf

Kuhfeld, Warren. Advanced ODS Graphics Examples. Free download,
https://support.sas.com/documentation/prod-p/grstat/9.4/en/PDF/odsadvg.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Kriss Harris
SAS Specialists Limited
italjet125@yahoo.com
http://www.krissharris.co.uk

Richann Watson
DataRich Consulting
richann.watson@datarichconsulting.com
http://www.datarichconsulting.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings17/0864-2017.pdf
mailto:italjet125@yahoo.com
mailto:richann.watson@datarichconsulting.com

