
1

What Kind of WHICH Do You CHOOSE to be?
Richann Watson, DataRich Consulting; Louise Hadden, Abt Associates Inc.

ABSTRACT
A typical task for a SAS® practitioner is the creation of a new variable that is based on the value of
another variable or string. This task is frequently accomplished by the use of IF-THEN-ELSE statements.
However, manually typing a series of IF-THEN-ELSE statements can be time-consuming and tedious, as
well as prone to typos or cut and paste errors. Serendipitously, SAS has provided us with an easier way
to assign values to a new variable. The WHICH and CHOOSE functions provide a convenient and
efficient method for data-driven variable creation.

INTRODUCTION
SAS functions are powerful tools that transform variables, create variables, or provide valuable
information regarding a variable. There are four basic categories that functions fall into: arithmetic (i.e.,
MIN, MEAN, MAX); date / time (i.e., TODAY, DATETIME); truncation (i.e., FUZZ, ROUND, TRUNC); and
last but not least, string or character functions, such as CAT, TRIM, and FIND. WHICH and CHOOSE
functions are valuable members of the string function category, which are generally utilized to clean and
analyze string variables. WHICH and CHOOSE functions are relatively new and are available for both
character and numeric processing: WHICHC, WHICHN, CHOOSEC, and CHOOSEN.

WHICH and CHOOSE functions are frequently used in conjunction with other character functions in order
to streamline verbose coding. Functions can greatly reduce the amount of programming required to
achieve desired results compared to the data step, formats, and other techniques. We will explore several
time and effort saving applications for the WHICH and CHOOSE functions below.

Note that data used in this paper are fictitious and do not represent any subject level data associated with
a particular study. This paper and presentation are intended for all proficiency levels and all industries.
Code samples were run on the Windows operating system using SAS 9.4 Maintenance Release 5.

WHICH FUNCTIONS
The WHICH functions return the index number from the first value in the list of values that matches the
string. Table 1 provides the syntax and description of the two WHICH functions.

Which Functions* Description

WHICHC(string, value-1 <, … value-n>) Returns the index of the first item in the
character value list that matches the string

WHICHN(string, value-1 <, … value-n>) Returns the index of the first item in the numeric
value list that matches the string

Table 1: Syntax and Description of WHICH Functions
Both WHICHC and WHICHN require at a minimum two arguments: string and value-1.

String is a constant, variable or an expression that evaluates to a value that will be searched for in the
value list.

Value-n is a constant, variable or an expression that evaluates to a value to be searched. There should
be a value for each item that is to be searched with the values separated by commas.

The WHICH functions return the positive integer i that corresponds to the ith value in the list that matches
the string. Note that i corresponds to the argument number – 1. Recall that the first argument is the string,
so the list of values does not start till the second argument.

The following section goes through an example to illustrate the use of these functions.

2

WHICHC
You have subject level data that contains gender and birth year and month. In addition, it contains some
key dates for the study. The dates are time-to-event (TTEDT), end of study (EOSDT), death (DTHDT),
and disease progression (PRGDT). Data Display 1 is a sample of the subject level data that is used.

Row USUBJID BRTHYR BRTHMO SEX TTEDT EOSDT DTHDT PRGDT

1 ABC-001 1972 JUL M 04APR2017 30MAY2017 03AUG2017 04APR2017

2 ABC-002 1976 NOV M 23AUG2017 24AUG2017 23AUG2017

Data Display 1: Subject Level Data with Birth Information, Gender and Key Dates

If the age is not provided, then the age may need to be calculated. Because the full date of birth is not
provided, then imputation rules need to be applied so that an age can be calculated. In order to do so,
you need the birth month in a numeric format. In addition, you may need to create a numeric code for
gender. The traditional way is to use a series of IF-THEN-ELSE as shown in SAS Program 1:
data outdsn;
 set indsn;
 if SEX = 'M' then SEXN = 2;
 else if SEX = 'F' then SEXN = 1;
 if BRTHMO = 'JAN' then BRTHMO_N = 1;
 else if BRTHMO = 'FEB' then BRTHMO_N = 2;
 …
 else if BRTHMO = 'DEC' then BRTHMO_N = 12;
run;

SAS Program 1: Assign Numeric Codes for Gender and Birth Month Using IF-THEN-ELSE

However, an alternative method for assigning numeric values is to use WHICHC function as
demonstrated in SAS Program 2:
data outdsn;
 set indsn;
 SEXN = whichc(SEX, 'F', 'M');
 BRTHMO_N = whichc(BRTHMO, 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN’,
 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC');
run;

SAS Program 2: Assign Numeric Codes for Gender and Birth Month Using WHICHC

In SAS Program 2, SEXN is assigned a value of 1 or 2 based on which argument in the list of values, the
search string, SEX, matches. For the birth month, the numeric code is assigned a value from 1 – 12
depending on the what the ith index is for the value that matches BRTHMO.

After execution we end up with the appropriate numeric codes for SEX and BRTHMO (Data Display 2).
Row USUBJID BRTHYR BRTHMO SEX SEXN BRTHMO_N

1 ABC-001 1972 JUL M 2 7

2 ABC-002 1976 NOV M 2 11

Data Display 2: Subject Level Data with Numeric Codes for Birth Month and Gender

3

WHICHN
Similar to WHICHC, WHICHN returns the ith index for a match. The difference between the two is that the
search string for WHICHN is a numeric value. Continuing with the example data in Data Display 1, you
can determine if the time-to-event date was censored or not by comparing it to the other dates in the data
set. SAS Program 3 shows the traditional approach to setting the censor variable:
data outdsn;
 set indsn;
 /* SAS CODE FROM PREVIOUS SAS PROGRAM */
 if TTEDT = PRGDT then CENSOR = 0;
 else if TTEDT = EOSDT then CENSOR = 1;
 else if TTEDT = DTHDT then CENSOR = 2;
run;

SAS Program 3: Assign Censor Variable Based on Time-to-Event Date Using IF-THEN-ELSE

With the use of WHICHN, you can streamline your code as shown in SAS Program 4:
data outdsn;
 set indsn;
 /* SAS CODE FROM PREVIOUS SAS PROGRAM */
 CENSOR = whichn(TTEDT, PRGDT, EOSDT, DTHDT) - 1;
run;

SAS Program 4: Assign Censor Variable Based on Time-to-Event Date Using WHICHN

In SAS Program 4, the first argument, TTEDT, is what is being searched for in the remaining three
arguments. The values for CENSOR are 0 – 2, where 0 indicates that the data is not censored, and the
event did occur. The values of 1 and 2 represent different levels of censoring. Because having an event
takes higher precedence of being censored, then the date that represents the event (PRGDT) is the first
item in the list of values to search. Since it is the first item, if a match is found (i.e., TTEDT = PRGDT),
then it returns a value of 1, but that is not what is needed. A value of 0 represents that the event
happened. In order to get the appropriate values for the censoring variable, you need to subtract one after
the function has returned a value.

Once a match is found the function returns the position of that first match. Thus, if it is possible for more
than one variable to have the same date, the order in which they are listed is important. The values for
CENSOR are shown in Data Display 3 after the execution of SAS Program 4.

Row USUBJID TTEDT EOSDT DTHDT PRGDT CENSOR

1 ABC-001 04APR2017 30MAY2017 03AUG2017 04APR2017 0

2 ABC-002 23AUG2017 24AUG2017 23AUG2017 2

Data Display 3: Subject Level Data with Censoring

Note that for both WHICHC and WHICHN if there is no match in the list of searched items, then the
functions will return a 0.

4

CHOOSE FUNCTIONS
The CHOOSE functions return either a character or numeric value based on the item selected from the
selection list. Table 2 provides the syntax and description of the CHOOSE functions.

CHOOSE Functions* Description

CHOOSEC(index-expression, selection-1 <, …
selection-n>)

Returns the character value from the selection
list that is associated with the index-expression

CHOOSEN(index-expression, selection-1 <, …
selection-n>)

Returns the numeric value from the selection list
that is associated with the index-expression

Table 2: Syntax and Description of CHOOSE Functions
Both functions require at least two arguments.

The first argument is the index-expression which is used to determine which item to select from the
selection list. The index-expression can be a numeric constant, variable that represents a numeric value
or an expression that evaluates to a numeric value.

The second argument is the first time in the selection list. You can add additional arguments for each
item in the selection list separated by commas. The items in the selection list are a constant, variable or
an expression that evaluates to a value.

The CHOOSE functions returns one of the values in the comma separated list that corresponds to the
value in the index-expression.

The best way to understand these functions is through the use of examples.

CHOOSEC
Assume we have subject level data that contains the treatment and race values as numeric value (Data
Display 4), but we want it to show the decoded values in the data set as well.

Row USUBJID BRTHYR BRTHMO SEX RACEN TRT01PN

1 ABC-001 1972 JUL M 5 1

2 ABC-002 1976 NOV M 5 4

Data Display 4: Subject Level Data with Numeric Values for Race and Treatment

Before discovering the CHOOSE functions, we may have used IF-THEN-ELSE statements in order to
assign the values, as shown in SAS Program 5:
data outdsn;
 set indsn;
 if TRT01PN = 1 then TRTP = 'TRT A';
 else if TRT01PN = 2 then TRTP = 'TRT B';
 else if TRT01PN = 3 then TRTP = 'TRT C';
 else if TRT01PN = 4 then TRTP = 'TRT D';

 length RACE $41;
 if RACEN = 5 then RACE = 'White';
 else if RACEN = 6 then RACE = 'Asian';
 else if RACEN = 7 then RACE = 'Black';
 else if RACEN = 9 then RACE = 'Other';
 else call missing(RACE);
run;

SAS Program 5: Create Decoded Variables for Race and Treatment with IF-THEN-ELSE

5

An alternative approach is to use the CHOOSEC function to return a value from a list using the numeric
version of the race and treatment variables, as shown in SAS Program 6:
data outdsn;
 set indsn;
 length RACE $41;
 TRTP = choosec(TRT01PN, 'TRT A', 'TRT B', 'TRT C', 'TRT D');
 RACE = choosec(RACEN - 4, 'White', 'Asian', 'Black', '', 'Other');
run;

SAS Program 6: Create Decoded Variables for Race and Treatment with CHOOSEC

In SAS Program 6, the values for TRT01PN are 1 – 4, so we were able to use the variable as the index to
select the correct decoded value for treatment. However, the values for RACEN are 5 – 7 and 9. In order
to use the list we could either subtract 4 from RACEN in the index-expression argument of the function,
as we did in the example, or we could have added blank values in the list so that the selection list
comprised of 4 blanks followed by the actual list. Notice that for RACEN there is no value 8, which
converts to item 4 in the list; therefore, item 4 in the list is denoted with a blank value. It could be denoted
with any value since it would never be used. It is mainly a placeholder so that we have a continuous
sequence.

After execution of the program, we end up with character values for race and treatment (Data Display 5).

Row USUBJID BRTHYR BRTHMO SEX RACEN TRT01PN RACE TRT01PN

1 ABC-001 1972 JUL M 5 1 White TRTA

2 ABC-002 1976 NOV M 5 4 White TRTD

Data Display 5: Subject Level Data with Character Values for Race and Treatment Added
By default, if the length of a variable being populated with the CHOOSEC function is not specified it will
default to 200 characters. Thus, in the example, TRTP has a length of 200 but RACE has a length of 41.
To avoid overly large variable lengths, use a length statement to set an appropriate length.

CHOOSEN
CHOOSEN is similar to CHOOSEC with the exception being that it returns a numeric value. Going back
to our data from Data Display 5, you notice that the numeric codes for treatment are reversed. In other
words, TRTP = “TRTD” should correspond to TRTPN = 1 and not TRTPN = 4. Again, you could use the
tried-and-true approach of IF-THEN-ELSE as illustrated in SAS Program 7.
data outdsn;
 set indsn;
 /* SAS CODE FROM PREVIOUS SAS PROGRAM */
 if TRT01PN = 1 then TRTPN = 4;
 else if TRT01PN = 2 then TRTPN = 3;
 else if TRT01PN = 3 then TRTPN = 2;
 else if TRT01PN = 4 then TRTPN = 1;
run;

SAS Program 7: Reverse Order of Treatment Numeric Codes Using IF-THEN-ELSE

The approach in SAS Program 7 is perfectly fine and there are only four lines of code. It is short enough
to maintain but what if more values are added which would mean more IF-THEN-ELSE statements. An
easier approach would be to use CHOOSEN as done in SAS Program 8.

6

data outdsn;
 set indsn;
 /* SAS CODE FROM PREVIOUS SAS PROGRAM */
 /* reverse the order of the treatments */
 TRTN = choosen(TRT01PN, 4, 3, 2, 1);
run;

SAS Program 8: Reverse Order of Treatment Numeric Codes Using CHOOSEN

Row USUBJID BRTHYR BRTHMO SEX RACEN TRT01PN RACE TRT01PN TRTPN

1 ABC-001 1972 JUL M 5 1 White TRTA 4

2 ABC-002 1976 NOV M 5 4 White TRTD 1

Data Display 6: Subject Level Data with Treatment Numeric Codes Reversed

In SAS Program 8, TRT01PN has values of 1 – 4, which is used to select from the list of arguments to
assign the value of TRTPN. Data Display 6 shows that TRT01PN = 1 was assigned TRTPN = 4.

For both CHOOSEC and CHOOSEN if the first argument is a negative value, then function starts from the
end of the list and returns the value counting from the right.

CONCLUSION
Which WHICH do you CHOOSE? The WHICH and CHOOSE functions can greatly reduce the amount of
IF-THEN-ELSE style coding and open the door to conditional processing. It can also replace PROC
FORMAT coding for recoding variables. We encourage you to try out these efficient functions.

REFERENCES
SAS Institute Inc. (n.d.). Dictionary of Functions and CALL Routines. Retrieved from

https://documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=p1q8bq2v0o11n6n1gpij3
35fqpph.htm&docsetVersion=9.4&locale=en

RECOMMENDED READING
Chauhan, Balram. “Alternative programming approach for Conditional processing in SAS”. Proceedings of
the PhUSE 2018 Conference. Raleigh, NC: PhUSE. https://www.lexjansen.com/phuse-
us/2018/ct/CT11_ppt.pdf

Horstman, J. “Beyond IF THEN ELSE: Techniques for Conditional Execution of SAS® Code”.
Proceedings of the SAS Global Forum 2017 Conference. Orlando, FL: SAS Global Forum.
https://support.sas.com/resources/papers/proceedings17/0326-2017.pdf

Horstman, J. “Fifteen Functions to Supercharge Your SAS® Code”. Proceedings of the PharmaSUG
2018 Conference. Seattle, WA: PharmaSUG.
https://www.pharmasug.org/proceedings/2018/BB/PharmaSUG-2018-BB17.pdf

Su, Jason J. “A Game Plan for Beating the IF-THEN-ELSE Overhead in DATA Steps”. Proceedings of the
SESUG 2020 Conference. Virtual: SESUG.
https://www.lexjansen.com/sesug/2020/SESUG2020_Paper_152_Final_PDF.pdf

https://www.lexjansen.com/phuse-us/2018/ct/CT11_ppt.pdf
https://www.lexjansen.com/phuse-us/2018/ct/CT11_ppt.pdf
https://support.sas.com/resources/papers/proceedings17/0326-2017.pdf
https://www.pharmasug.org/proceedings/2018/BB/PharmaSUG-2018-BB17.pdf
https://www.lexjansen.com/sesug/2020/SESUG2020_Paper_152_Final_PDF.pdf

7

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Richann Watson
DataRich Consulting
richann.watson@datarichconsulting.com

Louise Hadden
Abt Associates, Inc.
louise_hadden@abtassoc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:richann.watson@datarichconsulting.com
mailto:louise_hadden@abtassoc.com

	Abstract
	Introduction
	WHICH Functions
	WHICHC
	WHICHN

	CHOOSE Functions
	CHOOSEC
	CHOOSEN

	Conclusion
	References
	Recommended Reading
	Contact Information

