
1

PharmaSUG 2023 - Paper QT-236

10 Quick Tips for Getting Tipsy with SAS®
Lisa Mendez, Catalyst Clinical Research;

Richann Jean Watson, DataRich Consulting

ABSTRACT
There are many useful tips that do not warrant a full paper but put some cool SAS® code together and
you get a cocktail of SAS code goodness. This paper will provide ten great coding techniques that will
help enhance your SAS programs. We will show you how to 1) add quotes around each tokens in a text
string, 2) create column headers based values using Transpose Procedure (PROC TRANSPOSE), 3) set
missing values to zero without using a bunch of if-then-else statements, 4) using short-hand techniques
for assigning lengths of consecutive variables and for initializing to missing, 5) calculating the difference
between the visit's actual study day and the target study and accounting for no day zero (0); 6) use SQL
Procedure (PROC SQL) to read variables from a data set into a macro variable, 7) use the XLSX engine
to read data from multiple Microsoft® Excel® Worksheets, 8) test to see if a file exists before trying to
open it, such as an Microsoft Excel file, 9) using the DIV function to divide so you don’t have to check if
the value is zero, and 10) use abbreviations for frequently used SAS code.

INTRODUCTION
While there are other papers available that describe some of the functions that are used in this paper, this
paper is meant to provide a quick reference to coding tips that utilize the functions that can help enhance
your SAS code. It is not meant to be an in-depth dive into any one concept, but rather provides you with
techniques that you can use to solve various coding problems, or to provide efficiency. These tips will
help you to get started coding and enhance your existing code. Many times, you don’t know what you
don’t know, and you find ways to solve problems, but they may not necessarily be the most “elegant”
ways. By adding these 10 coding tips to your coding toolbox, you will save time and effort.

TIP 1: ADDING QUOTES AROUND EACH TOKEN IN A STRING
How many times have you been given a list of character values that need to be used to subset your data?
Normally, the lists are provided without each individual item enclosed in quotations. To use the list in an
SAS statement these values need to be quoted. We could manually add the quotation marks to each
item especially if it is a static list, but what if you a list that could change (i.e., data-driven list). How do we
add those quotes?

In SAS Program 1, we show how we can add quotations to each item in our list. We utilize several SAS
pre-defined functions. Because we are not interested in saving the list in a data set, we use DATA
NULL and create a temporary variable that will capture the new quoted list. First, we determine how
many tokens we have with the COUNTW function. We then loop through each item adding quotations
using the QUOTE function. After we have looped through each item, we then use CALL SYMPUTX
subroutine to save the temporary variable to a macro variable. Data Display 1 shows our two macro
variables, the original one we started with and the newly quoted macro variable.
%let fmtname = SUPPDMQNAM SUPPCMQNAM;
data _null_;
 fmtname = "&fmtname";
 length newfmtname $500;
 do i = 1 to countw(fmtname, ' ');
 newfmtname = catx(' ', newfmtname, quote(scan(fmtname, i)));
 end;
 call symputx('newfmtname', newfmtname);
run;

SAS Program 1: Adding Quotes to Individual Tokens

2

fmtname newfmtname
SUPPDMQNAM SUPPCMQNAM "SUPPDMQNAM" "SUPPCMQNAM"
Data Display 1: Original Macro Variable and Newly Quoted Macro Variable

TIP 2: COLUMN HEADERS WITH PROC TRANSPOSE
As we work to create outputs for various deliverables, we need to consider the incorporation of population
counts in the column headers. Most of the time this can be done using macros and while that is easy
enough to do, it can be tedious if you have several outputs that have the same overlying structure, but the
column headers may differ. Of course, these can be handled using the typical technique of macro
variables, but this requires you to know in advance the different populations and how many columns are
needed for each output. This could make it a bit cumbersome to reuse code; however, there is a way to
make this data driven.

In order to illustrate the concept of using a data-driven approach to create column headers with the
population counts, we need to create a sample data set. In our sample data set, we have the different
treatments (TRTP), and the population counts (PCNT) for each of the treatments. We can combine these
into one variable to create a treatment label (TRTPLBL) as seen in Data Display 2. In addition, we have a
numeric variable for each treatment. The numeric variable ideally should be sequential and represent the
order the data is to be presented. This comes into play in Tip 3. AVAL represents the counts per
treatment group that is to be displayed in the report. It is only used for illustration purposes and has no
significant meaning. Note the special character (`) in the label. This special character comes into play
when producing the output.

TRTPN TRTP PCNT TRTPLBL AVAL
1 Drug A 90 Drug A`(N=90) 86
2 Drug A + Comp C 90 Drug A + Comp C`(N=90) 75
3 Drug B 150 Drug B`(N=150) 137
4 Drug B + Comp D 90 Drug B + Comp D`(N=90) .
5 Drug A Overall 180 Drug A Overall`(N=180) 161
6 Drug B Overall 240 Drug B Overall`(N=240) 137

Data Display 2: Sample Data Set for Using Labels as Column Headers
Using our sample data set, we use PROC TRANSPOSE to convert the rows to columns (SAS Program
2). With the use of the ID statement, we indicate that TRTPN is to represent the column names. The
PREFIX option on the PROC TRANSPOSE statements, indicate that the variable names are to start with
‘TRT_’. We then use the IDLABEL statement to assign a label to each of the variables created using the
ID statement. Data Display 3 shows the transposed data set. However, it is not readily evident that the
labels have been assigned to each of the variable names.

proc transpose data = trt
 out = t_trt (drop = _:)
 prefix = TRT_;
 var AVAL;
 id TRTPN;
 idlabel TRTPLBL;
run;

SAS Program 2: Transpose Data to Convert from Rows to Columns

TRT_1 TRT_2 TRT_3 TRT_4 TRT_5 TRT_6
86 75 137 . 161 137

Data Display 3: Sample Data Set Transposed

3

Using the CONTENTS Procedure, we see that the labels have been assigned to each variable in Data
Display 4

Name Type Length Format Informat Label
TRT_1 Numeric 8 Drug A`(N=90)
TRT_2 Numeric 8 Drug A + Comp C`(N=90)
TRT_3 Numeric 8 Drug B`(N=150)
TRT_4 Numeric 8 Drug B + Comp D`(N=90)
TRT_5 Numeric 8 Drug A Overall`(N=180)
TRT_6 Numeric 8 Drug B Overall`(N=240)
 Data Display 4: Contents of the Transposed Data Set

Once the data are in the appropriate format, we can use the REPORT Procedure to produce the output.
Notice that in PROC REPORT, if all the variables are to be displayed, and they are in the order in which
you want them displayed, then we can use _ALL_ on the COLUMN statement. In addition, it is not
necessary to specify the DEFINE statements since by default PROC REPORT will use the labels
associated with the variable. Of course, if you need to control other aspects of the columns, such as
individual column widths, the data type or order, then a DEFINE statement is needed. But for illustration
purposes, we used a simple PROC REPORT (SAS Program 3) to produce TIP2.RTF (Data Display 5).
The special character that was embedded in the variable labels is used on the PROC REPORT statement
to indicate that this is where we want the label to split when writing to the ODS destination.

options orientation = landscape leftmargin = 1in rightmargin = 1in nodate;
ods rtf file = "C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy\TIP2.rtf";
proc report data = t_trt split = "`"
 style(column) = [just = c cellwidth = 1.35in];
 columns _all_;
run;
ods rtf close;
run;

SAS Program 3: PROC REPORT to Produce Output

Data Display 5: TIP2.RTF

TIP 3: MISSING VALUES DEFAULT TO ZERO
Now that we have our output, we see that there is a column with a missing value. Again, for a static set
of variables, this could be easily defaulted to zero with IF-THEN-ELSE. In this example, we would need 6
statements. But if in another output we only had 3 treatments or another had 8 treatments, the code
would need to be adjusted accordingly. A dynamic approach allows the population of 0 for null values
without using a bunch of IF-THEN-ELSE statements. Utilizing the ARRAY statement, we can loop
through each variable in the transposed data set. For this specific technique, the array name is the prefix
“TRT_” associated with the variables that are created using PROC TRANSPOSE illustrated in Tip 2. The
subscript indicated in the ARRAY statement is a macro variable that contains the number of treatments
that can be determined from the data. The COALESCEC function is used to return the first non-missing
value in the list specified, (i.e., TRT_{i} or 0). If TRT_{i} is null, then the 0 is returned. SAS Program 4 is
used to produce Data Display 6.

Drug A
(N=90)

Drug A + Comp C
(N=90)

Drug B
(N=150)

Drug B + Comp D
(N=90)

Drug A Overall
(N=180)

Drug B Overall
(N=240)

86 75 137 . 161 137

4

data t_trt2 (drop = i);
 set t_trt;
 array TRT_{&num_trt} 3;
 do i = 1 to dim(TRT_);
 TRT_{i} = coalesce(TRT_{i}, 0);
 end;
run;

SAS Program 4: Setting Null Values to Zero

TRT_1 TRT_2 TRT_3 TRT_4 TRT_5 TRT_6
86 75 137 0 161 137

Data Display 6: Revised Data Set with Null Values Set to Zero

TIP 4: SHORTHAND FOR DEALING WITH CONSECUTIVE VARIABLES AND DATA
SETS WITH SIMILAR NAMES
This next tip shows you a shorthand way to set a bunch of variables to missing as well how to set a bunch
of data sets together that have a similar name.

SHORTHAND FOR INITIALIZING VARIABLES TO MISSING
Typically, when defaulting variables to missing, we use an assignment statement for each variable as
seen in SAS Program 5. This approach requires you to use the correct syntax based on the data type,
i.e., a period for numeric or a set of quotes for character. But before we initialize the variables to missing,
we need to assign a length to each variable so that the character variables are not length of one and the
numeric variables do not default to a length of 8.

data temp;
 length varnmc1 varnmc2 varnmc3 varnmc4 varnmc5 varnmc6 varnmc7
 varnmc8 varnmc9 varnmc10 $200
 varnmn1 varnmn2 varnmn3 varnmn4 varnmn5 varnmn6 varnmn7
 varnmn8 varnmn9 varnmn10 varnmn11 varnmn12 varnmn13
 varnmn14 varnmn15 3.;
 varnmc1 = '';
 varnmc2 = '';
 …
 varnmc10 = '';
 varnmn1 = .;
 varnmn2 = .;
 …
 varnmn15 = .;
run;

SAS Program 5: Assigning Missing Values on Individual Assignment Statements
There is a much easier way to produce the same results as shown in SAS Program 5. Since all the
character variables were numbered consecutively and have the same length and all the numeric variables
are also numbered consecutively with the same length, we can utilize the var1 - varN approach to assign
the lengths of the variables. We then use the CALL MISSING subroutine to initialize all the variables.
SAS Program 6 demonstrates this technique, with SAS Program 7 showing two alternatives for an even
more abbreviated technique. With SAS Program 7, we take advantage of the wildcard character,” : “, to
indicate any variable that has the prefix will be part of the list of variables to be initialized.

/* shorthand for assigning lengths of consecutive vars and for initializing to missing */
data temp;
 length varnmc1 - varnmc10 $200 varnmn1 - varnmn15 3.;
 call missing(of varnmc1 - varnmc10, of varnmn1 - varnmn15);
run;

SAS Program 6: Assigning Missing Values Using a Shorthand Technique

5

data temp2;
 length varnmc1 - varnmc10 $200 varnmn1 - varnmn15 3.;
 call missing(of varnmc:, of varnmn:);
run;

data temp3;
 length varnmc1 - varnmc10 $200 varnmn1 - varnmn15 3.;
 call missing(of varnm:);
run;

SAS Program 7: Alternatives to SAS Program 6

SHORTHAND FOR SETTTING DATA SETS WITH THE SAME PREFIX
There are times when we need to pull data from several different sources and set some indicator variable
to identify the source. If we specify each data set individually, we can use the IN = option on the data set
along with IF-THEN-ELSE statements to set this indicator variable. In the example, there are three data
sets by owners (Data Display 7). SAS Program 8 illustrates how these can be combined into a master file
with a new variable, OWNER, added.

Data Display 7: List of Data Sets that Need to be Combined.
libname TIPSY "C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy";
data allpetsorig;
 set TIPSY.PETS_LISA (in = lisa)
 TIPSY.PETS_LOUISE (in = louise)
 TIPSY.PETS_RICHANN (in = richann);
 length OWNER $20;
 if lisa then OWNER = 'Lisa';
 else if louise then OWNER = 'Louise';
 else if richann then OWNER = 'Richann';
run;

SAS Program 8: Combining All the Pets Data into a Master File
If the data sets have the same prefix, a shorthand approach could be implemented using the colon
wildcard operator and the INDSNAME option. The wildcard operator indicates that we are to pull all data
sets in the indicated library (e.g., TIPSY) that have the same root name (e.g., PETS_). The INDSNAME
allows us to identify the source data set which can be used to create the OWNER variable. Keep in mind
that INDSNAME will provide the full name of the data set including the library name. For example,
TIPSY.PETS_LISA, TIPSY.PETS_LOUISE and TIPSY.PETS_RICHANN is what is returned in SOURCE.
Since we only want the owners name, we can use several SAS functions to retrieve only the portion of
the data set that contains the name (see SAS Program 9).

libname TIPSY "C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy";
data allpets;
 set TIPSY.PETS_:
 indsname = source;
 length OWNER $20;
 OWNER = propcase(scan(source, -1, '_'));
run;

SAS Program 9: Combining All the Pets Data into a Master File Using a Shorthand Technique

6

Utilizing this shorthand approach allows us to add more data to the master PETS data set without having
to modify the code.
53 data allpets;
54 set TIPSY.PETS_:
55 indsname = source;
56 length OWNER $20;
57 OWNER = propcase(scan(source, -1, '_'));
58 run;

NOTE: There were 5 observations read from the data set TIPSY.PETS_LISA.
NOTE: There were 6 observations read from the data set TIPSY.PETS_LOUISE.
NOTE: There were 5 observations read from the data set TIPSY.PETS_RICHANN.
NOTE: The data set WORK.ALLPETS has 16 observations and 15 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

SAS Log 1: Log from SAS Program 9
Note that this technique also works with the MERGE statement if all the data sets have the same key
variables that are used for merging (SAS Program 10 and SAS Log 2).
data richann_pets;
 merge TIPSY.RJW_PET:;
 by name;
run;

SAS Program 10: Merging All Pet Information into a Master Data
29 data richann_pets;
30 merge TIPSY.RJW_PET:;
31 by name;
32 run;

NOTE: There were 5 observations read from the data set TIPSY.RJW_PETBASIC.
NOTE: There were 5 observations read from the data set TIPSY.RJW_PETDEMO.
NOTE: There were 5 observations read from the data set TIPSY.RJW_PETOTHSP.
NOTE: The data set WORK.RICHANN_PETS has 5 observations and 13 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

SAS Log 2: Log from SAS Program 10

TIP 5: ABSOLUTE DIFFERENCE BETWEEN STUDY DAY AND TARGET DAY
Within CDISC ADaM standards variables ending in DY represent the relative days and therefore there is
no Day 0. Thus, when calculating DY variables, we implement programming logic to determine if the
reference date is on or after the analysis date to see if we need to add 1. Similarly, since there is no Day
0, special care needs to be taken when using the analysis visit window variable, AWTDIFF (Analysis
Window Diff from Target). AWTDIFF represents the absolute difference between the target day
(AWTARGET) and the relative day (ADY). SAS Program 11 shows how we can account for no Day 0
when calculating ADY and AWTDIFF.

data dt_dy;
 set dts;
 if nmiss(ADT, TRTSDT) = 0 then ADY = ADT - TRTSDT + (ADT >= TRTSDT);
 if nmiss(ADY, AWTARGET) = 0 then AWTDIFF = abs(ADY - AWTARGET) - ((ADY*AWTARGET) < 0);
run;

SAS Program 11: Accounting for No Day 0 When Calculating ADY and AWTDIFF

7

Notice in Data Display 8 that if we did not account for no Day 0, then for the record with ADT =
31OCT2022, the absolute difference from the target date would be off by one day. Which could make a
difference between selecting one record over another for analysis purposes.

TRTSDT ADT AWTARGET ADY AWTDIFF AWTDIFF *
01NOV2022 29OCT2022 1 -3 3 4
01NOV2022 31OCT2022 1 -2 2 3
01NOV2022 01NOV2022 1 1 0 0
01NOV2022 14DEC2022 42 44 2 2
01NOV2022 30JAN2023 84 91 7 7
* Not adjusted for no Day 0
Data Display 8: Calculating ADY and AWTDIFF When There is No Day 0

TIP 6: MACRO VARIABLE LIST USING PROC SQL
How many times have you created a macro and then invoked the macro by a list of macro statements?
This “hard coding” technique yields a static list of macro calls which would require updating as the more
elements are added or elements are removed. But what if you could drive the macro calls based on
values from a column in a data set? This data-driven technique is more efficient, because if the data
values change (maybe an addition or exclusion of a data element) the list is updated automatically and by
extension the macro calls are updated.

This tip shows how you can concatenate the values of one column of a data set into one macro variable
separated by a delimiter. This is useful for building up a list of variables or constants based on values in a
data set. You can also use the SQLOBS macro variable to reveal how many distinct variables there are in
the data processed by the query.

In Data Display 9, we see three variables from the SASHELP.BASEBALL data set: NAME, TEAM, and
POSITION. Let’s create a macro variable that will be a string of distinct variables separated by an
asterisk (*).

Player’s Name Team at the End of 1986 Position(s) in 1986
Allanson, Andy Cleveland C
Ashby, Alan Houston C
Davis, Alan Seattle 1B
Dawson, Andre Montreal RF
Galarraga, Andres Montreal 1B
Griffin, Alfredo Oakland SS
Data Display 9: SASHELP.BASEBALL Partial Data Set
Using PROC SQL, we will create a macro variable with a string of unique values of the POSITION
variable separated by an asterisk. We use SQLOBS to obtain the number of variables in the string and
assign it to a macro variable named N_VARS. We then write out the string and the N_VARS macro
variable in the log so we can see the values and the distinct number of variables in the string (SAS
Program 12).
proc sql noprint;
 select distinct Position
 into :Position_List separated by '*'
 from sashelp.baseball;
 %let n_vars = &SQLOBS;
quit;

%put &=n_vars &=position_list ; /* print variable list in the log */

SAS Program 12: Create New Data Set with Unique Values of Variable Position & Print String in Log

8

Since we used the “noprint” option in our PROC SQL code, the results of the query are not written to the
results window. In addition, since there is no CREATE TABLE statement, a physical data set is not
written out to the WORK library but is held in memory and stored in a macro variable named
POSITION_LIST. We can see what values are stored in the macro variable by writing the macro variable
to the log using the %put statement. And an added tip is to add an equal sign (=) in between the
ampersand (&) and the macro variable name to display the macro variable name in the log. SAS Log 3
shows the unique variables in the macro variable, which are separated by the asterisk character.
 %put &n_vars &position_list ; /* print variable list in the log */
N_VARS=25
POSITION_LIST=13*1B*1O*23*2B*2S*32*3B*3O*3S*C*CD*CF*CS*DH*DO*LF*O1*OD*OF*OS*RF*S3*SS*UT

SAS Log 3: Log from SAS Program 12
To invoke the macro variable, you will need to use the scan function, which will scan the macro variable
string and select text between the asterisks. In the do loop, you can use the number of variables, or use a
data-driven variable to get the count.

In SAS Program 13, we create a data set for each baseball position. We will sort the baseball data set
before invoking the macro.
/* sort the data set by position */
proc sort data = baseball;
 by position;
run;

/* Create seperate datasets for each position */
%macro position_datasets;
 %do i = 1 %to &n_vars;
 %let var = %scan(&Position_List,&i,*);

 data Baseball_&var;
 set sashelp.baseball;
 where position = "&var";
 run;

 %end; /* of do loop */

%mend; /* end macro position_datasets */

/* invoke macro */
%position_datasets;

SAS Program 13: Invoke Macro Using the Scan Function to Obtain Macro Variable
After the program runs, you should have 25 new data sets in the WORK library, each one with
observations pertaining to only one position (see Figure 1).

Figure 1: Output Data Sets in WORK Library.

9

TIP 7: USING THE XLSX ENGINE TO READ IN MULTIPLE EXCEL WORKSHEETS
Did you know that the SAS XLSX engine allows you to read and write Microsoft Excel files as if they were
data sets in a library? The advantage is that it accesses the XLSX file directly; it does not use the
Microsoft data APIs as a go-between. The catch is, you must have a license for SAS/Access to PC Files.
(Hemedinger, 2015)

Let’s say we have an Excel workbook that has three worksheets: English, Math, and TX History, and we
want to create three data sets for these worksheets.

We start by using the LIBNAME statement that uses the XLSX engine:

libname Grades XLSX "C:\Users\lamen\OneDrive\Documents\!Personal\PharmaSUG 2023\ Grade 5
Grade Book – Mendez.xlsx";

SAS Program 14: LIBNAME Statement Using XLSX Engine
In the LIBNAME statement, you point to where the Excel workbook is located. When you run the
statement, the structure of library is set up (see Figure 2).

Figure 2: The Grades Library is Created by the XLSX Engine with Names of the Worksheets as
Data Set Names.
Note: Because variable names and worksheet names often have spaces or characters that are not used
in valid SAS naming conventions, you can use the global option “VALIDVARNAME=ANY” to allow those
names to be read in by SAS. (DelGobbo, 2006)

options validvarname=any;

SAS Program 15: Optional Options Statement to Allow SAS to Read in All Variable Names
To load the data from the worksheets into the data sets, you can use the SAS Dictionary tables (Brill I.,
2006) and Tip #7 to read the list of data set names into a macro variable, and then read the Excel
worksheet data into the data sets. SAS Program 16provides the example code.

10

/* -- */
/* Create a dataset with all the Excel Worksheet Names */
/* (dataset names in the grades library) */
/* -- */
proc sql noprint;
 create table grades.grades_list as
 select *
 from sashelp.vmember
 where libname = "GRADES";
quit;

/* -- */
/* Create a macro variable with list of dataset names (subjects) */
/* -- */
proc sql noprint;
 select memname
 into :subject separated by '*'
 from grades.grades_list;
 %LET n_vars = &SQLOBS;
quit;

%put &n_vars &subject ; /* print variable list in the log */

/* --- */
/* Read the names of the worksheets, create and populates */
/* all of the data in the worksheet into the datasets in */
/* the library. */
/* --- */
%macro populate;
 %do i = 1 %to &n_vars;
 %let var = %scan(&subject,&i,*);

 PROC IMPORT out = grades.&var
 datafile = "C:\Users\lamen\OneDrive\Documents\!Personal\PharmaSUG 2023\Grade
5 Grade Book – Mendez.xlsx";
 DBMS = XLSX REPLACE;
 sheet="&var";
 getnames=yes;
 RUN;

 %end; /* of do loop */

%mend; /* end macro populate */

/* invoke macro */
%populate;

SAS Program 16: Create a Data Set with Data Set Names from Grades Library, Create a Macro
Variable with List of Data Set Names, and Macro to Read in Excel Worksheets Data into Data Sets

TIP 8: CHECK FOR FILE EXISTENCE OR SUCCESSFUL ASSIGNMENT OF A
LIBNAME
How many times have you executed a program and after it finishes executing realize that it did not
execute successfully because a file (or a LIBNAME) did not exist? Checking for the existence of files or
successful assignment of LIBNAMEs early in the execution process can help save time. If the file does
not exist or LIBNAME was not successfully assigned, then you can build in exception handling that will
return a message to the log and halt execution.

SAS has built-in functions that will allow us to check the existence of a file or the successful assignment
of a LIBNAME. FILEEXIST checks for the existence of a file and returns a value of 1 if the file is found
and a value of 0 if the file is not found. LIBREF checks for the successful assignment of a LIBNAME. If it
is successful, then it returns a value of 0, otherwise it returns a non-zero value. Both functions are
invoked using %SYSFUNC. SAS Program 17 illustrates a macro that checks to ensure the file is found or

11

the LIBNAME is assigned before proceeding to the next step. If the condition is not met, then a message
is written to the log and the macro execution is stopped. SAS Log 4 demonstrates the outcome when a
file is found and when one is not found as well as when a LIBNAME is successfully assigned and not
assigned.

libname tipsy 'C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy';
libname tips2 'C:\Users\gonza\Desktop\Conferences\Drafts\Tips';

%macro lfexist(libfile = , lfcheck = libname);
 %if %upcase(&lfcheck) = LIBNAME %then %let lffunc = %sysfunc(libref(&libfile)) = 0;
 %else %let lffunc = %sysfunc(fileexist(&libfile)) = 1; ;

 %if &lffunc %then %do;
 %put &libfile WAS FOUND!;
 %put ADDITIONAL SAS CODE WOULD BE ENTERED HERE TO CONTINUE PROCESSING;
 %end;
 %else %do;
 %put %sysfunc(compress(E RROR:)) &libfile WAS NOT FOUND!!!;
 %abort;
 %end;
%mend lfexist;

%lfexist(libfile = C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy\Pet Data.xlsx,
 lfcheck = file)
%lfexist(libfile = C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy\Pet_Data.xlsx,
 lfcheck = file)
%lfexist(libfile = tipsy)
%lfexist(libfile = tips2)

SAS Program 17: Macro to Check Existence of a File or Successful Assignment of a LIBNAME
42 %lfexist(libfile = C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy\Pet
Data.xlsx, lfcheck = file)
C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy\Pet Data.xlsx WAS FOUND!
ADDITIONAL SAS CODE WOULD BE ENTERED HERE TO CONTINUE PROCESSING
43 %lfexist(libfile =
C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy\Pet_Data.xlsx, lfcheck = file)
ERROR: C:\Users\gonza\Desktop\Conferences\Drafts\Tipsy\Pet_Data.xlsx WAS NOT FOUND!!!
ERROR: Execution terminated by an %ABORT statement.
44 %lfexist(libfile = tipsy)
tipsy WAS FOUND!
ADDITIONAL SAS CODE WOULD BE ENTERED HERE TO CONTINUE PROCESSING
45 %lfexist(libfile = tips2)
ERROR: tips2 WAS NOT FOUND!!!
ERROR: Execution terminated by an %ABORT statement.

SAS Log 4: Log for SAS Program 17

TIP 9: DIVIDING NUMBERS USING THE DIVIDE FUNCTION
A number of outputs that we generate require us to determine a percentage or a ratio. Thus, we need to
determine the numerator and denominator and then decide if we can even perform the calculations. If we
just divide the numerator by the denominator without ensuring the denominator is non-zero (SAS
Program 18) then we could end up with a division by zero and receive an unwanted log message (SAS
Log 5). While this is not a warning, it is something we do not want to see in our logs. To circumvent this
log message, we would need to employ an IF-THEN-ELSE technique to verify that the denominator is not
zero, before we perform the calculation.

data div;
 set num_den;
 DIV = NUM / DEN;
run;

SAS Program 18: Dividing Without Confirmation Denominator is NOT Zero

12

29 data div;
30 set num_den;
31 DIV = NUM / DEN;
32 run;

NOTE: Division by zero detected at line 31 column 14.
NUM=39 DEN=0 DIV=. _ERROR_=1 _N_=3
NOTE: Mathematical operations could not be performed at the following places. The results
of the operations have been set to missing values.
 Each place is given by: (Number of times) at (Line):(Column).
 1 at 31:14
NOTE: There were 5 observations read from the data set WORK.NUM_DEN.
NOTE: The data set WORK.DIV has 5 observations and 3 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

SAS Log 5: Log from SAS Program 18
Although using IF-THEN-ELSE is a valid technique, there is another technique that will allow us to
perform the calculation without checking for a non-zero denominator. The DIVIDE function returns the
calculated value or if it is unable to calculate it will return a special missing value. SAS Program 19
illustrates the use of the DIVIDE function. Notice that the log does not yield any messages regarding the
division by zero (SAS Log 6). The calculation is performed and if there is a division by zero then it returns
a special missing value, e.g., “I “ for infinity (Data Display 10).

data div;
 set num_den;
 DIV = divide(NUM, DEN);
run;

SAS Program 19: Dividing Using the DIVIDE Function
28 data div;
29 set num_den;
30 DIV = divide(NUM, DEN);
31 run;

NOTE: There were 5 observations read from the data set WORK.NUM_DEN.
NOTE: The data set WORK.DIV has 5 observations and 3 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

SAS Log 6: Log from SAS Program 19

NUM DEN DIV DIV*
34 3 11.33333 11.33333

125 10 12.5 12.5
39 0 . I

0 -3 0 0
-44 -4 11 11

* Uses the DIVIDE function

Data Display 10: Data Set Using the DIVIDE Function

TIP 10: ABBREVIATIONS FOR FREQUENTLY USED SAS CODE
We all have our own way of doing things. For example, you may always want your program headers to
have specific information, or you may comment blocks of code in your program a certain way. Maybe you
need to run a snippet of code regularly, or if you can’t always remember the correct options for a

13

procedure, a quick way to insert these items is to create an abbreviation or a keyboard macro. These
keyboard macros hold snippets of code that can be quickly called using a keyboard stroke. Creating a
keyboard macro or abbreviation differs slightly between SAS Enterprise Guide and SAS Display
Manager. We will illustrate both approaches.

To create an abbreviation and keyboard macro we can implement the following steps:

1. To create the abbreviation, we need to open
the New snippet (SAS Enterprise Guide) or
Add abbreviations (SAS Display Manager
window.

2. In the New snippet (Add Abbreviation) dialogue
box, insert an abbreviation for the snippet of
code or text string that is to be inserted into the
program editor. In the text to insert box, the
text string that is displayed when the
abbreviation is typed is entered. For this
example, we want to be able to bring up the
syntax for the FREQ Procedure to produce a
Chi-Square and Fisher’s Exact test as well as
produce a stacked plot.

3. If you want to assign keystrokes to the
abbreviation, you need to access the Macro
Management window by selecting Program 
Manage macros and snippets in SAS
Enterprise Guide or Tools  Keyboard Macros
 Macros in SAS Display Manager.

4. The abbreviation that was just created should
appear in the list of user-defined macros and
snippets.

14

5. To assign the keystrokes, select Assign Keys.

6. Assign Keys dialogue box opens and you can
select the keyboard macro that you want to
assign keys (or change the assigned keys).
Place the cursor in the box ‘Press new shortcut
key’ and select the keys you want to use to
invoke the snippet of code. Be mindful that
some keystrokes already have pre-defined
snippets. After you enter your keystrokes, it
will indicate if the specific strokes are already
assigned. If they have been, then you can
choose to overwrite the pre-defined value (not
recommended) or assign a different set of
keystrokes. Select Assign and OK.

Now every time we enter ‘frq_c_f’ in the program editor or we use keystrokes, the insert command is
invoked, and the string assigned is written to the program editor.

When you type in the abbreviation a pop-up is displayed showing a portion of the text that will be entered.

Upon hitting return, the full text is shown. The full text can also be retrieved by using the keystrokes that
were assigned (Alt+Shift+F). In addition, you can open the macro manager and select the macro and then
run to display the full text string.

15

1. Note that if you do not wish to assign an
abbreviation, you can skip steps 1 and 2 and
go directly to the macro manager and create a
new keyboard macro.

2. A new window appears, where you enter the
name of the keyboard macro you are trying to
create. You then need to select a command
from the list of commands in the left pane. For
this illustration, we are using ‘Insert a string’.
The arrow button in the middle is used to
move the command to the right pane.

3. After you have entered, the string, select OK
and this returns you to the ‘Create Keyboard
Macro’ screen which now shows the
command and the string. If you need to edit
the string, you can select the notepad icon
that is to the right of the keyboard macro
content pane. This will re-open the ‘Insert
String’ dialogue box. Once you are satisfied
with the content, you select OK and this
returns you to the macro management
window.

4. After the keyboard macro is created, the

keystrokes can be assigned by following steps
5 and 6.

CONCLUSION
This paper reviewed 10 tips that can enhance any SAS programmer’s programming toolkit. These tips
are just some of many ways to provide solutions to common programming problems. We recommend
reviewing the tip and using it within your own data and SAS environment. These tips can provide a
starting point to delve into various programming solutions. Many times, one doesn’t know a solution
exists until a problem occurs. The authors acknowledge that these tips are useful and are provided to
assist other programmers, but they are ever evolving and can be enhanced. If you have questions or
suggestions about any of these tips, feel free to contact the authors.

REFERENCES
Black, S. (2019). Keyboard Macros! An awesome tool you may have never heard of - once you do, you will never

program the same again (It's that amazing!). Seattle: WUSS. Retrieved from
https://www.lexjansen.com/wuss/2019/208_Final_Paper_PDF.pdf

Brill I., E. P. (2006). An Introduction to SAS Dictionary Tables - Paper 259-31. Proceedings of the SAS Users Group
International 31 Conference (SUGI 31). San Francisco: SUGI.

16

CDISC Analysis Data Model Team. (2021, Nov). Analysis Data Model Implementation Guide v1.3. Retrieved from
CDISC: https://www.cdisc.org/standards/foundational/adam

DelGobbo, V. (2006). Creating AND Importing Multi-Sheet Excel Workbooks the Easy Way with SAS - Paper 115-31.
Proceedings of the SAS Users Group International 31 Conference (SUGI 31). San Francisco: SUGI.

Hemedinger, C. (2015, May 20). SAS Blogs. Retrieved from SAS Dummy Blog:
https://blogs.sas.com/content/sasdummy/2015/05/20/using-libname-xlsx-to-read-and-write-excel-files.

SAS Institute Inc. (2021, Oct 08). Using Editor Macros. Retrieved Jan 2023, from SAS® Enterprise Guide 8.1
documentation:
https://documentation.sas.com/doc/en/egdoccdc/8.1/egug/n190dw6xkgmupxn1dfi0ldzt0tcj.htm

SAS Institute Inc. (2022, Sep 02). ARRAY Statement. Retrieved Jan 2023, from SAS® 9.4 and SAS® Viya® 3.5
Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lestmtsref/p08do6szetrxe2n136ush727sbuo.htm

SAS Institute Inc. (2022, Aug 15). Dictionary of Functions and CALL Routines. Retrieved Jan 2023, from SAS® 9.4
and SAS® Viya® 3.2 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/p1q8bq2v0o11n6n1gpij335fqpph.ht
m

SAS Institute Inc. (2022, Sep 30). TRANSPOSE Procedure. Retrieved Jan 2023, from SAS® 9.4 and SAS® Viya®
3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/p1r2tjnp8ewe3sn1acnpnrs3xbad.htm

ACKNOWLEDGMENTS
The authors want to thank Lex Jansen for continuing to publish SAS Proceedings from 1976 to present.
The website searches 36,515 papers (as of the date of writing this paper) and is a wealth of information
for SAS Users. https://www.lexjansen.com

RECOMMENDED READING
• Base SAS® Procedures Guide

• SAS® For Dummies®

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Lisa Mendez
Catalyst Clinical Research
lisa.mendez@catalystcr.com

Richann Jean Watson
DataRich Consulting
richann.watson@datarichconsulting.com

Any brand and product names are trademarks of their respective companies.

https://www.lexjansen.com/

	Abstract
	Introduction
	Tip 1: Adding Quotes Around Each Token in a String
	Tip 2: Column Headers with PROC TRANSPOSE
	Tip 3: Missing Values Default to Zero
	Tip 4: Shorthand for Dealing with Consecutive variables and Data Sets with Similar Names
	Shorthand for Initializing Variables to Missing
	Shorthand for Settting Data Sets with the Same Prefix

	Tip 5: Absolute Difference Between Study Day and Target Day
	Tip 6: Macro Variable List Using PROC SQL
	Tip 7: Using the XLSX Engine to Read in Multiple EXcel Worksheets
	Tip 8: Check for File Existence or Successful Assignment of a LIBNAME
	Tip 9: Dividing Numbers Using the DIVIDE Function
	Tip 10: Abbreviations For Frequently Used SAS Code
	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information

