
1

PharmaSUG 2024 - Paper AP-135

LAST CALL to Get Tipsy with SAS®: Tips for Using CALL Subroutines
Lisa Mendez, PhD, Catalyst Flex;

Richann Jean Watson, DataRich Consulting

ABSTRACT
This paper provides an overview of six SAS CALL subroutines that are frequently used by SAS®
programmers but are less well-known than SAS functions. The six CALL subroutines are CALL MISSING,
CALL SYMPUTX, CALL SCAN, CALL SORTC/SORTN, CALL PRXCHANGE, and CALL EXECUTE.

Instead of using multiple IF-THEN statements, the CALL MISSING subroutine can be used to quickly set
multiple variables of various data types to missing. CALL SYMPUTX creates a macro variable that is
either local or global in scope. CALL SCAN looks for the nth word in a string. CALL SORTC/SORTN is
used to sort a list of values within a variable. CALL PRXCHANGE can redact text, and CALL EXECUTE
lets SAS write your code based on the data.

This paper will explain how those six CALL subroutines work in practice and how they can be used to
improve your SAS programming skills.

INTRODUCTION
Using CALL subroutines in SAS Programs provides a powerful way to extend the functionality of your
SAS code. There are benefits to learning CALL subroutines but learning to use them properly will ensure
your programs are robust and reusable. They enhance functionality, efficiency, and interoperability. By
calling external subroutines, you can avoid reinventing the wheel. Instead of writing custom code within
SAS, you can leverage existing solutions to perform specific tasks more efficiently.
One thing you need to ensure is that any external CALL subroutines you use are compatible with your
SAS environment. Different versions of SAS may have varying levels of support for specific CALL
subroutines.

CALL MISSING
A common SAS subroutine that sets one or more variable values (numeric or character) to missing is the
CALL MISSING subroutine. Note: A missing value for a numeric variable is denoted by a period (.) while a
missing value for a character variable is denoted by a blank space. You may ask, ‘why should I use the
CALL MISSING subroutine to initialize variables to missing?’ Here are few reasons why:

1. Prevents unplanned assignments of values due to a value being carried forward from a previous
DATA step or from a previous record.

2. Ensures a clean slate when dealing with imputation or derivations for numeric calculations.

3. Removes the ‘uninitialized value’ message in the log.

The syntax for CALL MISSING is

CALL MISSING(variable-name-1 <, variable-name-2, ...>);

Before we look at sample code, let’s take a partial look at the SASHELP.BASEBALL data set (Sample
Data 1).

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/p1iq436yh8838rn1ud38om45n99k.htm#n1higx8r849074n1blmgil0wmkq4
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/p1iq436yh8838rn1ud38om45n99k.htm#n1higx8r849074n1blmgil0wmkq4

2

Sample Data 1: SASHELP.BASEBALL Subset
In this data set you will see that the first value of SALARY is missing (.) for Allanson, Andy, but the other
values are present. Let’s use the CALL MISSING subroutine to set all the salary values to missing as
seen in SAS Program 1. Note that SALARY is numeric, yet with CALL MISSING, you can mix and match
character types if the character type is already defined within the program data vector (PDV). This is
illustrated in a subsequent example. In this case the PDV is populated with the data type with the SET
statement.

The sample code will look something like this:
data work.baseball;
 set sashelp.baseball (keep = name team salary);

 /* Initialize salary variables */
 call missing(salary);

 /* Rest of your data processing steps */
run;

SAS Program 1: Sample Code to Initialize Numeric and Character Variables in a Data Set
After the code is run, Sample Data 2 illustrates the data set with the salary variable set to missing.

Sample Data 2: Subset of SASHELP.BASEBALL with Values Set to Missing

3

Another example would be a data set with lab results for patients; however, some of the values are not as
expected. After further investigation, we find that the values are incorrect and we need to remove them
(or set them to missing), but only for a select number of patients and for only a few variables with the
variables being a mix of numeric and character variables.

Sample Data 3 shows a small data set named cholesterol, with patients and their cholesterol results.

Sample Data 3: Sample of Cholesterol Results for a Patient
SAS Program 2 demonstrates the code we can use to set only a few variables to missing for some
subjects as seen in Sample Data 4. In SAS Program 2, CHOLESTEROL is a numeric variable and
CHOLESTEROL_STAT is a character variable. As with the previous example, the PDV is populated with
the SET statement and so the data types for CHOLESTEROL and CHOLESTEROL_STAT are assigned.
data cholesterol2;
 set cholesterol;

 /* specify specific patients */
 if subjid in ('XX-US-123s45678-2314', 'XX-US-123s45678-2390') then
 call missing (cholesterol, cholesterol_stat); /* set only a few variables to missing */
run;

SAS Program 2: Sample Code to Set Only Specific Variables for Specific Records to Missing

Sample Data 4: Sample of Cholesterol Results for a Patient with Specific Records Set to Missing

4

Using the CALL MISSING subroutine allows us to eliminate the need for arrays, loops, series of IF-THEN-
ELSE, etc. in our code and set any variables in the argument to missing. As you can see in the second
example, you can set multiple variables to missing in one CALL, and you can set both character and
numeric variables to missing.

Before you use the CALL MISSING subroutine you can check to see if a variable has a missing value by
using the MISSING function, which will return a value of one (1) if the argument is missing, or a value of
zero (0) otherwise.

CALL SYMPUTX
There are several different ways to specify a macro variable: %LET, SQL procedure, positional parameter
in a macro definition, key parameter in a macro definition.

In addition, to these common techniques for defining a macro variable, there are two CALL subroutines
that can be used to assign a value to a macro variable within a DATA step. They both have two required
arguments, the name of the macro variable and the value to be assigned.

CALL SYMPUT(macro-variable, value);

CALL SYMPUTX(macro-variable, value<, symbol-table>);

While these may appear the same, they actually are different with respect to scope of the macro variable
that is being created. In order to understand this difference, it is important to understand the symbol
tables that a macro variable can be associated with. There is the global symbol table and local symbol
table, with the local symbol table having different levels depending on the depth of nesting of macros
(Display 1).

Macro variables within the global symbol table are available for access for the duration of the SAS
session and can be referenced anywhere in the program (SAS Institute Inc., n.d.). However, macro
variables within a local symbol table are available for access within the scope of the macro. Thus, local
macro variables have no meaning outside the macro and if referenced outside the scope for which the
macro is defined, you will get the following WARNING message.
WARNING: Apparent symbolic reference <<macro-variable>> not resolved.

GLOBAL Symbol Table
Macro Vars Defined:
 &NUMPETS
 &&&type._&statvar._N
Macro Vars Available:
 Macro Vars Defined

%OUTERMAC
Local Symbol Table
Macro Vars Defined:
 &&NUM_&type
Macro Vars Available:
 &NUMPETS
 &&&type._&statvar._N
 &type
 Macro Vars Defined

%INNERMAC
Local Symbol Table
Macro Vars Defined:
 &statvar
 &&&type._&statvar._N

&&&type._&statvar._MEAN
 &&&type._&statvar._STD
Macro Vars Available:
 &NUMPETS
 &type
 Macro Vars Defined

Display 1: Illustration of Scope of Macro Variables (Watson & Hadden, 2022)

5

Now that we have an understanding of symbol tables, we can investigate the differences between CALL
SYMPUT and CALL SYMPUTX.

CALL SYMPUT stores the macro variable within the most local table symbol if available. In order words,
if you define a macro variable using CALL SYMPUT within %INNERMAC, then the macro variable can
only be accessed within %INNERMAC. It cannot be referenced within %OUTERMAC or anywhere else
in the program. In addition, when a numeric value is stored in a macro variable, it is converted to
character and a message is written to the log.

CALL SYMPUTX allows you to specify which symbol table the macro variable is to be stored in. The
options are ‘G’ for global, ‘L’, for the most local or ‘F’ for the local symbol table if it already exists.
Otherwise, it is stored in the most local symbol table. SAS Program 3 illustrates the use of CALL
SYMPUT and CALL SYMPUTX.

data class;
 set SASHELP.CLASS end = eof;
 if eof then do;
 call symput('numstudents', _n_); 
 call symputx('laststudent', NAME, 'f'); 
 end;
run;
%put _user_;

%macro class;
 proc sort data = class;
 by descending AGE;
 run;
 data agecnt;
 set class;
 by descending AGE;
 retain cnt;
 if first.age then cnt = 0;
 cnt + 1;
 call symput(cats('age', AGE), cnt);
 call symputx(cats('dage', AGE), cnt);
 call symputx(cats('fage', AGE), cnt, 'f'); 
 call symputx(cats('fage', AGE), cnt, 'l');
 call symputx(cats('xage', AGE), cnt, 'g');
 run;
 %put _user_;
%mend class;

%class
%put _user_; 

SAS Program 3: Sample Code to Illustrate CALL SYMPUT vs CALL SYMPUTX
 CALL SYMPUT is storing the number of students, a numeric value, as a macro variable. Notice that it

produces a message in the log regarding conversion of a numeric value to character (yellow portioned
highlighted in SAS Log 1). Note that when the numeric value is converted to a character value it is not
left justified. By default, since there is no local symbol table, the macro variable NUMSTUDENTS is
placed in the global symbol table and is available for reference throughout the SAS session.

 CALL SYMPUTX is storing the name of the last student in the file as a global macro variable
regardless of what symbol table is specified. This is because when the third argument is not one of the
options or the indicated symbol table cannot be found, it defaults to using the same symbol table that
CALL SYMPUT uses. In this case it would use the global symbol table and therefore is available for
reference throughout the SAS session.

 Within the CLASS macro definition, we illustrate the difference between CALL SYMPUT and
SYMPUTX. The portion in SAS Log 1 that is in the turquoise box shows the local symbol for the
%CLASS as well as the global symbol table. CALL SYMPUT within the macro definition utilizes the
local symbol table if it exists and CALL SYMPUTX will use the symbol table used by CALL SYMPUT if
a symbol table is not specified. At the creation of the macro variable AGE16, the local symbol table,
CLASS, did not exist yet, therefore, AGE16 is stored as a global macro variable and since CALL

6

SYMPUTX without the third argument uses the same symbol table as CALL SYMPUT it will store
DAGE16 in the global table as well (see turquoise highlight). For the other AGE and DAGE macro
variables, these are stored in the CLASS symbol table because at the time of their creation the local
symbol table had been created. The FAGE macro variables are created using the ‘F’ option in CALL
SYMPUTX, therefore it will store the macro variables in the most local symbol table, in this case,
CLASS. XAGE uses the ‘G’ option for CALL SYMPUTX and therefore the macro variables are stored
in the global symbol table and can be used outside of the macro.

 To show that the macro variables that were stored in the local symbol table are no longer available, we
can use %PUT _USER_ to list all the user-defined macro variables in the log. The portion in SAS Log
1 in the pink box shows the macro variables that are available for reference, which are all the global
macro variables.

1 data class;
2 set SASHELP.CLASS end = eof;
3 if eof then do;
4 call symput('numstudents', _n_);
5 call symputx('laststudent', NAME, 'f');
6 end;
7 run;

NOTE: Numeric values have been converted to character values at the places given by:
 (Line):(Column).
 4:34
NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: The data set WORK.CLASS has 19 observations and 5 variables.
NOTE: DATA statement used (Total process time):
 real time 0.03 seconds
 cpu time 0.00 seconds

8 %put _user_;
GLOBAL LASTSTUDENT William
GLOBAL NUMSTUDENTS 19
9
10 %macro class;
11 proc sort data = class;
12 by descending AGE;
13 run;
14 data agecnt;
15 set class end = eof;
16 by descending AGE;
17 retain cnt;
18 if first.age then cnt = 0;
19 cnt + 1;
20 call symput(cats('age', AGE), cnt);
21 call symputx(cats('dage', AGE), cnt);
22 call symputx(cats('fage', AGE), cnt, 'f');
23 call symputx(cats('fage', AGE), cnt, 'l');
24 call symputx(cats('xage', AGE), cnt, 'g');
25 if eof then call symputx('laststudent', NAME, 'f');
26 run;
27 %put _user_;
28 %mend class;
29
30 %class

NOTE: There were 19 observations read from the data set WORK.CLASS.
NOTE: The data set WORK.CLASS has 19 observations and 5 variables.
NOTE: PROCEDURE SORT used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

NOTE: Numeric values have been converted to character values at the places given by:
 (Line):(Column).
 1:230
NOTE: There were 19 observations read from the data set WORK.CLASS.
NOTE: The data set WORK.AGECNT has 19 observations and 6 variables.
NOTE: DATA statement used (Total process time):

7

 real time 0.01 seconds
 cpu time 0.00 seconds

CLASS AGE11 2
CLASS AGE12 5
CLASS AGE13 3
CLASS AGE14 4
CLASS AGE15 4
CLASS DAGE11 2
CLASS DAGE12 5
CLASS DAGE13 3
CLASS DAGE14 4
CLASS DAGE15 4
CLASS FAGE11 2
CLASS FAGE12 5
CLASS FAGE13 3
CLASS FAGE14 4
CLASS FAGE15 4
CLASS FAGE16 1
GLOBAL AGE16 1
GLOBAL DAGE16 1
GLOBAL LASTSTUDENT Thomas
GLOBAL NUMSTUDENTS 19
GLOBAL XAGE11 2
GLOBAL XAGE12 5
GLOBAL XAGE13 3
GLOBAL XAGE14 4
GLOBAL XAGE15 4
GLOBAL XAGE16 1
31
32 %put _user_;
GLOBAL AGE16 1
GLOBAL DAGE16 1
GLOBAL LASTSTUDENT Thomas
GLOBAL NUMSTUDENTS 19
GLOBAL XAGE11 2
GLOBAL XAGE12 5
GLOBAL XAGE13 3
GLOBAL XAGE14 4
GLOBAL XAGE15 4
GLOBAL XAGE16 1

SAS Log 1: Log for SAS Program 3: Sample Code to Illustrate CALL SYMPUT vs CALL SYMPUTX

CALL SCAN
The CALL SCAN subroutine can play a crucial role in SAS programs. The SCAN function within SAS is a
potent tool, engineered for breaking a string down into distinct words. This function allows us to set our
own delimiters, which are then used to separate words or characters within a string. Common examples
of delimiters include spaces, commas, asterisks, and slashes. Depending on which environment you are
in, will determine the default delimiters.

• ASCII: blank ! $ % & () * + , - . / ; < ^

• EBCDIC: blank ! $ % & () * + , - . / ; < ¬ | ¢

Note that for ASCII environments if there is no ^, then ~ is also used as a default delimiter.

Before we go on, let’s be clear about what a delimiter is and what a word is when using the CALL SCAN
subroutine. Per the SAS Help Center, a delimiter is any character that is used to separate words. For
example, a space (SAS Institute Inc., 2024). In the CALL SCAN subroutine, a word refers to a substring
that has all the following characteristics:

• Is bounded on the left by a delimiter or the beginning of a string

• Is bounded on the right by a delimiter or the end of the string

• Contains no delimiters. (SAS Institute Inc., 2024)

8

Let’s look at the syntax of the CALL SCAN routine:

CALL SCAN(<string>, count, position, length <, <character list> <, <modifier(s) >>>);

The count, position, and length arguments are mandatory, but string, character list, and modifiers are
optional. Let’s break down the arguments a bit, paying particular attention to the count argument.

String: The string argument specifies a character constant (e.g. “T”), a variable, or
expression.

Count: The count argument is a nonzero numeric constant (i.e., positive or negative, e.g.
“5”), variable that contains a numeric value, or expression that resolves to an
integer value. The count specifies the number of the word in the character string
(the nth word) that you want the subroutine to select. Let’s review the count
argument a bit. If the count is positive, then CALL SCAN counts words from LEFT
(at the beginning of the string) to RIGHT in the character string. If the count is
negative, then it counts words from RIGHT to LEFT in the character string from the
end of the string.

Position: The position is a numeric variable that holds the position of the first character of
the specified word. Note that if count exceeds the number of words in the string,
the value that is returned for the position argument is zero (0). If count is zero (0)
or missing (.) the value that is returned for the position argument is missing (.).

Length: The length is a numeric variable that holds the length of the word that is returned.
Note that if count exceeds the number of words in the string, then the value that is
returned for the length argument is zero (0). If count is zero (0) or missing (.) the
value that is returned for the length argument is missing (.).

Character List: The character list specifies an optional character constant, variable, or expression
that initializes a list of characters. This list determines which characters are used
as the delimiters that separate words. There are a couple of rules. 1) By default, all
characters in character-list are used as delimiters, and 2) if you specify the K
modifier in the modifier argument, all characters that are not in character-list are
used as delimiters (see modifiers below).

Modifiers: Modifiers specify a character constant, variable, or expression in which each non-
blank character modifies the action of the subroutine. We won’t delve too deeply
into modifiers in this paper, but you can find a list of modifiers in the SAS Help
Center. However, we will mention the ‘M’ modifier, which indicates that multiple
consecutive delimiters are treated as words with a length of zero and that
delimiters at the beginning or end of a string are also treated as words with length
zero.

(SAS Institute Inc., 2024)

Let’s look at a couple of examples where we will use the CALL SCAN routine to find the first and last
word of a character string. We will be using the SASHELP.WEBMSG data set; however, we will only be
showing a partial data set (observations 60-69 in the original data set, Sample Data 5). The character
strings in the TEXT variable have many characters, including special characters.

9

Sample Data 5: Variable TEXT from a Modified SASHELP.WEBMSG Data Set
To begin, let’s create a data set that will create the variables TEXT, POSITION and LENGTH and store
the first word of the character string in the TEXT variable using the CALL SCAN subroutine (SAS
Program 4 and Sample Data 6).

data webmsg2;
 set webmsg;

 /* obtain the first word from the variable named Text for all observations */
 call scan(text, 1, position, length);
 /* create a variable for the word returned from the CALL SCAN routine */
 First_Word = substrn(text, position, length);

run;

SAS Program 4: Sample Code to Illustrate CALL SCAN Subroutine

TEXT position length First_Word
the SAS System. The service you chose is release 1 3 the
%1$. Please choose another service. 2 1 1
<HTML> 2 5 HTML>
<HEAD><TITLE>Application Error</TITLE></HEAD> 2 5 HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000"
LINK="#0000FF" VLINK="#800080" ALINK="#FF0000">

2 4 BODY

<H1>Application Error</H1> 2 14 H1>Application
<P>System Message: %1$
 2 8 P>System
System return code: %2$ </P> 1 6 System
<HR> 2 3 HR>
<ADDRESS>Please notify %2$ 2 14 ADDRESS>Please

Sample Data 6: Sample Data from SAS Program 4: Sample Code to Illustrate CALL SCAN
Subroutine

10

Remember that leading and trailing delimiters are ignored because the M modifier is not used. The
reason many of the observations have a position of 2 is because the word is preceded by a ‘<’, which
SAS sees as a delimiter. Also notice that the number ‘1’ is counted as a word, as numbers are not
considered delimiters.

Now let’s add in code to look for the last word of the string. Note that we can change the names of
“position” and “length” to differentiate between the first word and the last word. One thing we want to
stress is that when you use a negative number for the count (see code highlighted in yellow), SAS begins
at the END of the string, and counts words from right to left. This is different than some other SAS
functions, which may scan right to left starting at the absolute value of argument, so be careful when
interpreting results. Because we are using -1, SAS will begin at the end of the string, and return the last
word in the string. SAS Program 5 demonstrates the use of CALL SCAN to extract the first and last words
of a string as seen in Sample Data 7.

data webmsg2;
 set webmsg;

 /* obtain the first word from the variable named Text for all observations */
 call scan(text, 1, first_pos, first_length);
 /* create a variable for the word returned from the CALL SCAN routine */
 First_Word = substrn(text, first_pos, first_length);

 /* obtain the last word from the variable named Text for all observations */
 call scan(text, -1, Last_Pos, Last_Length);
 /* create a variable for the word returned from the CALL SCAN routine */
 Last_Word = substrn(text, Last_Pos, Last_Length);

run;

SAS Program 5: Sample Code to Illustrate Extracts First and Last Word Using CALL SCAN

Sample Data 7: Sample Data for SAS Program 5: Sample Code to Illustrate Extracts First and Last
Word Using CALL SCAN
CALL SCAN facilitates efficient word extraction and manipulation within SAS programs, which makes it
one of the most vital pieces of code to know and have in your toolbox.

11

CALL SORTC / SORTN
We all have sorted data at the record level, but how about sorting data within a variable? Sorting values
within a variable can be accomplished using the CALL SORTC (for character) and CALL SORTN (for
numeric) values.

CALL SORTC(variable-1, <, …, variable-n>)

CALL SORTN(variable-1, <, …, variable-n>)

Like most anything else, before we can use it, we need to understand how it works. To do so, we need to
understand the different collating sequences that can be used for comparing character values in the
SORT procedure. PROC SORT either uses EBCDIC or ASCII collating sequences depending on the
environment (SAS Institute Inc., 2024).

Collating Sequence for EBCDIC Collating Sequence for ASCII

Notice that for EBCDIC lower case is sorted before upper case, while upper case is sorted before lower
case in ASCII. In addition, the numbers for ASCII are sorted prior to the alphabet while they are sorted
after the alphabet for EBCDIC. Furthermore, the various symbols are sorted differently. Of particular
interest is the underscore, which is sorted after the upper-case letters in ASCII, but before all letters in
EBCDIC.

Let’s look at an example of how data would be sorted using PROC SORT. In Sample Data 8, the
MYPEEPS2 data set is sorted using the default collation sequence, ASCII, for the environment in which
this was run. If the desire is to sort using ASCII, there are other ways to ensure that ASCII collating
sequence is used as shown in alternative  and  in Sample Data 8. Thus, in the particular environment
in which the example was run, all three yield (, , ) the same results. In Sample Data 9, we illustrate
the sort order of the data if we use EBCDIC collating sequence. You can see that _AllPeeps is the last
record in Sample Data 8 but it is the first record in Sample Data 9.

NAME

Richann

Louise

Troy

Josh

Lisa

_AllPeeps

 proc sort data = mypeeps2;
 by name;
 run;

 proc sort ASCII data = mypeeps2;
 by name;
 run;

 options SORTSEQ = ASCII;
 proc sort data = mypeeps2;
 by name;
 run;

NAME

Josh

Lisa

Louise

Richann

Troy

_AllPeeps

Sample Data 8: Sample Data Sorted Using Default Collating Sequence

12

NAME

Richann

Louise

Troy

Josh

Lisa

_AllPeeps

 proc sort EBCDIC data = mypeeps2;
 by name;
 run;

 options SORTSEQ = EBCDIC;
 proc sort data = mypeeps2;
 by name;
 run;

NAME

_AllPeeps

Josh

Lisa

Louise

Richann

Troy

Sample Data 9: Sample Data Sorted Using Specified Collating Sequence, EBCDIC
Now that we have that knowledge in our toolkit, let’s turn to sorting within a variable. To accomplish this,
we need to determine the number of items in our list (Sample Data 10) so that we can parse it out and
save each element as an array element. Note that Sample Data 9 has tokens in no particular order. The
goal is to put them in alphabeticaly order. In SAS Program 6, we use CALL SYMPUTX to store the
number of elements in the list and that is used to build the array. The values for each array element prior
to the CALL SORTC statement is shown in Sample Data 11. Once CALL SORTC is executed and
MYPEEPS is reassigned, the values are sorted as seen in Sample Data 12. The idea for this came from
Paul Dorfman’s “Sorting Arrays Using Hash Object”.

MYPEEPS

Richann Louise Troy Josh Lisa _AllPeeps

Sample Data 10: Sample Data Illustrating Sorting Values in a Variable
data _null_;
 set mypeeps;
 call symputx('numpeeps', countw(mypeeps));
run;

%put &=numpeeps;

data sortedpeeps (drop = peeps:);
 set mypeeps;
 array peeps(&numpeeps) $10;
 call missing(of peeps{*});
 do i = 1 to countw(mypeeps);
 peeps{i} = scan(mypeeps, i);
 end;
 call sortc (of peeps{*});
 mypeeps = catx(' ', of peeps{*});
run;

SAS Program 6: Sample Code to Sort Values in a Variable

MYPEEPS PEEPS1 PEEPS2 PEEPS3 PEEPS4 PEEPS5 PEEPS6

Richann Louise Troy
Josh Lisa _AllPeeps

Richann Louise Troy Josh Lisa _AllPeeps

Sample Data 11: Sample Data Prior to Sorting

MYPEEPS PEEPS1 PEEPS2 PEEPS3 PEEPS4 PEEPS5 PEEPS6

Lisa Josh Louise Richann
Louise Troy _AllPeeps

Josh Lisa Louise Richann Troy _AllPeeps

Sample Data 12: Sample Data After Sorting

13

Some things to note is that CALL SORTC uses ASCII. Even if you set the SORTSEQ option to EBCDIC
on the OPTIONS statement, it will still use ASCII.

CALL EXECUTE
There are times when implementing data-driven techniques help with speeding up the programming
process by allowing the data determine what code is written. For example, if we want to look for the
maximum date for each subject in all the data sets in a given library, how would we achieve this? The
brute force way would be to manually code logic to look at each data set and date variable combination
as shown in SAS Program 7. This would require us to know every single data set and date variable
combination and manually code that, but what if some combinations are removed or added. We would
have to go back into the program and make this manual update.
%macro maxdt(dsn = , dtc =);
 data &dsn;
 set SDTMDATA.&dsn;
 format __&dtc. date9.;
 if length(&dtc) >= 10 then __&dtc = input(substr(&dtc, 1, 10), e8601da.);
 keep USUBJID __&dtc;
 run;

 proc sort data = &dsn;
 by USUBJID __&dtc;
 run;

 data __max_&dtc._&dsn;
 set &dsn;
 by USUBJID __&dtc;
 if last.USUBJID;
 run;
%mend maxdt;

%maxdt(dsn = AE, dtc = AESTDTC)
%maxdt(dsn = AE, dtc = AEENDTC)
…
%maxdt(dsn = VS, dtc = VSDTC)

SAS Program 7: Sample Code to Look for Maximum Date – Brute Force
An alternative approach is to use a data-driven technique that utilizes CALL EXECUTE subroutine. CALL
EXECUTE subroutine takes one argument. It resolves the argument and then executes the argument at
the next step boundary (e.g., run; quit;). CALL EXECUTE allows us to develop code that writes code
based on the data.

CALL EXECUTE(argument);

The argument can be a character string enclosed in quotation marks or a variable (not enclosed in
quotation marks) or a combination of both. Keep in mind that if you need to mask certain macro facility
characters (e.g., %, &), those should be enclosed in single quotes. The use of double quotes within CALL
EXECUTE will resolve to a macro invocation and execute immediately, which may not be the desired
result.

Going back to our example of looking for the maximum date for each subject in each data set, we need to
programmatically identify all the data set and date variable combinations. This can be easily achieved
using DICTIONARY.COLUMNS (see SAS Program 8 and Sample Data 13).

proc sql noprint;
 create table alldts as
 select MEMNAME, NAME
 from DICTIONARY.COLUMNS
 where LIBNAME = 'SDTM' and NAME ? 'DTC';
quit;

SAS Program 8: Sample Code to Identify All Data Sets and Date Variable Combinations

14

MEMNAME NAME

MEMNAME NAME

MEMNAME NAME
AE AESTDTC

DM RFXENDTC

HO HOENDTC

AE AEENDTC

DM RFICDTC

LB LBDTC
CE CEDTC

DM RFPENDTC

MB MBDTC

CE CESTDTC

DM DTHDTC

MH MHDTC
CE CEENDTC

DM BRTHDTC

MH MHSTDTC

CM CMDTC

DS DSSTDTC

MH MHENDTC
CM CMSTDTC

DV DVSTDTC

RP RPDTC

CM CMENDTC

EC ECSTDTC

SU SUDTC
DA DADTC

EC ECENDTC

SU SUSTDTC

DM RFSTDTC

EX EXSTDTC

SU SUENDTC
DM RFENDTC EX EXENDTC

VS VSDTC

DM RFXSTDTC

HO HOSTDTC

Sample Data 13: Sample List of All Data Sets and Date Variable Combinations
Now that we have identified all the possible combinations, we can use CALL EXECUTE to build the
macro call statements. Note CALL EXECUTE is going to write all the %MAXDT call statements that were
manually programmed in SAS Program 7 (portion highlighted in turquoise). CALL EXECUTE is called
within a DATA step (SAS Program 9).
data _null_;
 set alldts; 
 call execute (catx(' ', '%maxdt(dsn =', MEMNAME, ', dtc =', NAME, ')')); 
run;

SAS Program 9: Sample Code to Illustrate CALL EXECUTE
 The program utilizes the data from the data set that contains the list of all possible data set and date

variable combinations.

 CALL EXECUTE takes one argument. The argument can be a string within quotes, a variable or a
combination of a string and variable. If using a combination of a string and variable, this can be done
either by creating a new variable prior to the CALL EXECUTE statement and using the new variable or
by building the statement within CALL EXECUTE by nesting functions. For this example, we opted to
build the argument directly within CALL EXECUTE by nesting the CATX function. Notice that the
macro call portion ‘%maxdt(dsn =’ is in single quotes in order to mask the %. It is then followed by the
variable name that contains the data set name (MEMNAME) and this is not enclosed in quotes. We
continue to build the rest of the macro call by indicating the key word parameter in quotes, ‘, dtc =’ and
using the variable name that contains the date variable (NAME) not enclosed in quotes. Lastly, we
close the macro call statement with the closing parenthesis. This is building all the %MAXDT call
statements (e.g., %maxdt(dsn = AE, dtc = AESTDTC) %maxdt(dsn = AE, dtc = AEENDTC)).

Once we get to the step boundary (e.g., run;), all the %MAXDT statements are executed and the code
that is written is shown in the log.

1 data _null_;
2 set alldts;
3 call execute (catx(' ', '%maxdt(dsn =', MEMNAME, ', dtc =', NAME, ')'));
4 run;

NOTE: There were 35 observations read from the data set WORK.ALLDTS.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.01 seconds

NOTE: CALL EXECUTE generated line.
1 + data AE; set SDTMDATA.AE; format __AESTDTC date9.; if length(AESTDTC) >= 10 then __AESTDTC =
input(substr(AESTDTC, 1, 10), e8601da.); keep USUBJID __AESTDTC; run;

15

NOTE: There were 411 observations read from the data set SDTMDATA.AE.
NOTE: The data set WORK.AE has 411 observations and 2 variables.
NOTE: Compressing data set WORK.AE increased size by 100.00 percent.
 Compressed is 2 pages; un-compressed would require 1 pages.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

1 + proc
sort data = AE; by USUBJID __AESTDTC; run;

NOTE: There were 411 observations read from the data set WORK.AE.
NOTE: SAS sort was used.
NOTE: The data set WORK.AE has 411 observations and 2 variables.
NOTE: Compressing data set WORK.AE increased size by 100.00 percent.
 Compressed is 2 pages; un-compressed would require 1 pages.
NOTE: PROCEDURE SORT used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

2 + data __max_AESTDTC_AE; set AE; by USUBJID __AESTDTC; if last.USUBJID; run;

NOTE: There were 411 observations read from the data set WORK.AE.
NOTE: The data set WORK.__MAX_AESTDTC_AE has 85 observations and 2 variables.
NOTE: Compressing data set WORK.__MAX_AESTDTC_AE increased size by 100.00 percent.
 Compressed is 2 pages; un-compressed would require 1 pages.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

<< repeated for each MEMNAME and NAME combination >>

69 + data VS; set SDTMDATA.VS; format __VSDTC date9.; if length(VSDTC) >= 10 then __VSDTC =
input(substr(VSDTC, 1, 10), e8601da.); keep USUBJID __VSDTC; run;

NOTE: There were 6845 observations read from the data set SDTMDATA.VS.
NOTE: The data set WORK.VS has 6845 observations and 2 variables.
NOTE: Compressing data set WORK.VS increased size by 50.00 percent.
 Compressed is 6 pages; un-compressed would require 4 pages.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

69 + proc sort
data = VS; by USUBJID __VSDTC; run;

NOTE: There were 6845 observations read from the data set WORK.VS.
NOTE: SAS sort was used.
NOTE: The data set WORK.VS has 6845 observations and 2 variables.
NOTE: Compressing data set WORK.VS increased size by 50.00 percent.
 Compressed is 6 pages; un-compressed would require 4 pages.
NOTE: PROCEDURE SORT used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

69 + data
70 + __max_VSDTC_VS; set VS; by USUBJID __VSDTC; if last.USUBJID; run;

NOTE: There were 6845 observations read from the data set WORK.VS.
NOTE: The data set WORK.__MAX_VSDTC_VS has 111 observations and 2 variables.
NOTE: Compressing data set WORK.__MAX_VSDTC_VS increased size by 100.00 percent.
 Compressed is 2 pages; un-compressed would require 1 pages.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

SAS Log 2: Log for SAS Program 9: Sample Code to Illustrate CALL EXECUTE

CALL PRXCHANGE
SAS has a variety of tools that help us to find search strings within another string or to change a specific
set of characters or string within another string. But what if you don’t have an actual string to search for
that needs to be replaced. Instead, you have a pattern that needs to be redacted.

SAS utilizes Perl-regular expression (PRX) functions and CALL subroutines to help find these patterns
within a text string. With PRX functions and CALL subroutines you can search for these patterns, and
when a match is found you can modify it by swapping order or replacing the text. There are five PRX

16

functions and five CALL subroutines, but for the purpose of this paper we are only going to look at the
PRXCHANGE subroutine.

CALL PRXCHANGE(regular-expression-id, times, old-string <, new-string <, result-length
<, truncation-value <, number-of-changes> > > >);

CALL PRXCHANGE is used in conjunction with PRXPARSE function.

regular-expression-id = PRXPARSE(perl-regular-expression)
Because the syntax for PRX functions and subroutines are a bit clunky, we need to explain some
metacharacters. Note only the metacharacters used in this example are listed in Table 1.

Metacharacter Description

s/ Substitution operator

() Indicates a grouping
\ Escape character, overrides the next metacharacter

\n Matches capture buffer n

\d Matches a digit (0 – 9)

\D Matches any character that is not a digit

\w Matches any word character or alphanumeric character, including the underscore

{n} Matches n times

+ Matches the preceding subexpression one or more times

Table 1: List of Some PRX Metacharacters

We use the subject profile description in Sample Data 14 to illustrate the use of PRXPARSE and CALL
PRXCHANGE. The goal is to mask the subject’s name, the subject ID and the date of birth in every
instance it is found. In addition, we want to change the order in which the condition is specified so that it
reads more like a sentence.

DESCR

Smith, Jane: Overactive/Condition. Subject 001-001 date of birth 04JUL1976 exhibits high energy
and inability to sleep. In addition subject 001-001 demonstrates high functioning even with the lack of
sleep. Smith, Jane is like the energizer bunny. Recorded 06JAN2022.

Doe, John: Grumpy/Condition. Subject 001-002 date of birth 24MAY1972 has moderate energy and
needs adequate sleep for full functioning. Subject 001-002 has a tendency towards grumpiness when
not provided with enough sleep. Smith, John can be like a grumpy old bear. Recorded 06JAN2022.

Sample Data 14: Sample Data to Illustrate Redaction with CALL PRXCHANGE
To achieve the desired result can be a daunting task, but with PRXCHANGE this can be easily achieved.
Well somewhat easy! It does take some time to figure out the PRX syntax. However, once you get over
the hurdle of learning the PRX syntax, it can help with masking things like phone numbers or removing
diagnostic codes from a patient chart or dictionary codes from coded terms in clinical data.

Using the data in Sample Data 14, we execute the code in SAS Program 10 to redact the information.
The pattern that is going to be changed is stored in a regular-expression-id using the PRXPARSE
function. In all four regid# statements, s/ is used to indicate that we want to perform a substitution. The
end of the pattern that is being searched for is also marked by a / and following is the string that is used
for the substitution. The end of the substitution is also marked by a /.

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/n0frf578x6vno8n1w26b6qn2wlt5.htm#n1nd9x9s7dpcaqn1tmaoke5w0qqz
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/n0frf578x6vno8n1w26b6qn2wlt5.htm#n0b8gfebn8rqaxn1uj787d7ixgqf
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/n0frf578x6vno8n1w26b6qn2wlt5.htm#p19xg56j4k68djn1bjt92meljbo5
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/n0frf578x6vno8n1w26b6qn2wlt5.htm#n0ng27vaibjhmon1cq4gx5bf6kqh
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/n0frf578x6vno8n1w26b6qn2wlt5.htm#n023w6mzwvpb6jn1xdmuz5xr7ukf
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/n0frf578x6vno8n1w26b6qn2wlt5.htm#n08hwc9r0raybhn1p1q2xeml0f42
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/lefunctionsref/n0frf578x6vno8n1w26b6qn2wlt5.htm#n0km4l9c929eion1q7cr7w1eid9v

17

data patprofile_masked;
 set patprofile;
 regid1 = prxparse('s/\d{3}-\d{3}/XXXXXX/'); 
 regid2 = prxparse('s/birth \d{2}\D{3}\d{4}/birth DDMONYYY/'); 
 regid3 = prxparse('s/(\w+), (\w+)/FNAME LNAME/'); 
 regid4 = prxparse('s/(\w+)\/(\w+)/$2 is $1/'); 
 call prxchange(regid1, -1, DESCR);
 call prxchange(regid2, -1, DESCR);
 call prxchange(regid3, -1, DESCR); 
 call prxchange(regid4, -1, DESCR);
 run;

SAS Program 10: Sample Code to Redact Subject Information
 \d indicates we want to match on a digit. The {3} immediately following indicates we want to be

‘greedy’ and match on the digit 3 times. The hyphen is a non-metacharacter so it will be matched as a
hyphen. We then have \d{3} to indicate we want 3 more digits. Thus, the pattern that is being
searched for is 3 digits followed by a hyphen followed by 3 more digits (e.g., ###-###). Once the
search pattern is identified, then the substitution value is specified which in this case it is ‘XXXXXX’.

 birth is a string that will be searched for as is. It is followed by a space and then \d{2} which indicates
we want 2 digits. Immediately following the 2 digits is \D{3} which indicates we want to match on 3
non-digits. That is then followed by 4 more digits (i.e., \d{4}). Thus, the pattern we are looking for is
‘birth ##XXX####’. This pattern is then replaced with the indicated text ‘birth DDMONYYYY’. You may
be wondering why ‘birth’ was part of the search string if it is not being replaced with anything. It was
added to the search string in case there are other dates, such as the recorded date, that should not be
masked.

 (\w+) indicates that we want to match a group of characters. In this search pattern, we want a group of
characters that is followed by a column and then followed by another group of characters. This is
replaced with the text ‘FNAME LNAME’.

 The fourth regular-expression-id is like the third in that it is looking for a group of characters separated
by another group of characters, but instead of being separated by a comma it is separated by a /.
Since / is a metacharacter that is used to indicate the start and end of a pattern, we need to use the
override metacharacter \ to mask it. Thus, \/ is needed to indicate / is part of the search string. The
search string is then replaced by a pattern that is based on the buffers. In the search pattern we
identified two capture buffers. The first capture buffer was the group of characters prior to the /, while
the second capture buffer is the group of characters after the /. According to the replacement pattern
we are placing the group of characters in the second capture buffer first, followed by the string ‘ is ‘,
and then followed by the group of characters in the first capture buffer.

 Now that all the search/substitution patterns have been assigned to regular-expression-id, that can be
used within CALL PRXCHANGE to redact the data. One of the arguments within CALL PRXCHANGE
is the number of times the substitution is to be made. If the value is -1, then the substitution will repeat
until the end of the source value.

The result of the data (Sample Data 15) shows that the subject’s name, ID and date of birth have been
replaced with generic text and the condition is swapped so that it reads like a complete sentence.

18

DESCR

FNAME LNAME: Condition is Overactive. Subject XXXXXX date of birth DDMONYYY exhibits high
energy and inability to sleep. In addition XXXXXX demonstrates high functioning even with the lack of
sleep. FNAME LNAME is like the energizer bunny. Recorded 06JAN2022.

FNAME LNAME: Condition is Grumpy. Subject XXXXXX date of birth DDMONYYYY has moderate
energy and needs adequate sleep for full functioning. Subject XXXXXX has a tendency towards
grumpiness when not provided with enough sleep. FNAME LNAME can be like a grumpy old bear.
Recorded 06JAN2022.

Sample Data 15: Sample Data of Redacted Subject Data using CALL PRXCHANGE

CONCLUSION
Let’s conclude our exploration of some SAS CALL subroutines. These powerful tools enhance the
capabilities of SAS programming by providing specialized functionality. CALL MISSING assigns missing
values to specified character or numeric variables. It’s particularly useful when you need to set both
character and numeric variables to missing values. CALL SYMPUTX dynamically creates or modifies
macro variables within a DATA step. It’s handy for automating tasks and customizing program behavior.
CALL SCAN extracts words from a character string based on specified delimiters. Useful for parsing text
data and extracting relevant information. CALL SORTC/SORTN can sort character or numeric arrays.
These routines allow you to efficiently organize data for subsequent analysis. CALL PRXCHANGE
performs pattern-matching replacements using Perl regular expressions. It’s great for data cleaning and
transformation. CALL EXECUTE dynamically generates and executes SAS code within a DATA step.
This is valuable for creating flexible and adaptive programs.
CALL subroutines can also be used for those routines that might not be readily available in SAS. For
example, you can leverage advanced statistical algorithms from R or perform complex data manipulations
using Python. CALL subroutines facilitate seamless communication between SAS and other programming
languages. This interoperability allows you to combine the strengths of different tools within a single
program. And always be cautious when executing external code within SAS. Validate the source of the
routine and ensure it doesn’t compromise the security of your data or system.
Leveraging CALL subroutines empowers SAS programmers to handle complex tasks, manipulate data
effectively, and streamline their workflows. Remember to choose the appropriate subroutine based on
your specific requirements and enjoy the efficiency they bring to your SAS programs!

ACKNOWLEDGMENTS
The authors want to thank Lex Jansen for continuing to publish SAS Proceedings from 1976 to present.
The website searches 36,515 papers (as of the date of writing this paper) and is a wealth of information
for SAS Users. https://www.lexjansen.com.

REFERENCES
Amy Alabaster, M. A. (n.d.). Cracking Cryptic Doctors’ Notes with SAS® PRX Functions. SAS Global Forum.

Retrieved Feb 2024, from https://support.sas.com/resources/papers/proceedings20/4638-2020.pdf
Campbell, J. (2012). Perl Regular Expressions in SAS® 9.1+ - Practical Applications. San Francisco, CA:

PharmaSUG. Retrieved from https://www.pharmasug.org/proceedings/2012/TA/PharmaSUG-2012-TA08.pdf

Dorfman, P. (2018). Sorting Arrays Using Hash Object. St. Pete's Beach, FL: SESUG. Retrieved from
https://analytics.ncsu.edu/sesug/2018/SESUG2018_Paper-288_Final_PDF.pdf

Kunwar, P. S. (2019). Quick Tips and Tricks: Perl Regular Expressions in SAS®. Dallas, TX: SAS Global Forum.
Retrieved from https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/4005-
2019.pdf

Mullins, L. (2019). Using the PRXCHANGE Function to Remove Dictionary Code Values from the Coded Text Terms.
Philadelphia, PA: PharmaSUG. Retrieved from
https://www.pharmasug.org/proceedings/2019/BP/PharmaSUG-2019-BP-315.pdf

https://www.lexjansen.com/

19

SAS Institute Inc. (2023, Dec 11). CALL SYMPUT Routine. Retrieved Feb 2024, from SAS® 9.4 and SAS® Viya® 3.5
Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/mcrolref/p09y28i2d1kn8qn1p1icxchz37p3.htm

SAS Institute Inc. (2023, Dec 11). CALL SYMPUTX Routine. Retrieved Feb 2024, from SAS® 9.4 and SAS® Viya®
3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/mcrolref/p1fa0ay5pzr9yun1mvqxv8ipzd4d.htm

SAS Institute Inc. (2024, Jan 18). CALL EXECUTE Routine. Retrieved Feb 2024, from SAS® 9.4 and SAS® Viya®
3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/p1blnvlvciwgs9n0zcilud6d6ei9.htm

SAS Institute Inc. (2024, Feb 28). CALL MISSING Routine. Retrieved Mar 2024, from SAS® 9.4 and SAS® Viya® 3.5
Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/p1iq436yh8838rn1ud38om45n99k.
htm

SAS Institute Inc. (2024, Jan 18). CALL PRXCHANGE Routine. Retrieved Feb 2024, from SAS® 9.4 and SAS®
Viya® 3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/n0frf578x6vno8n1w26b6qn2wlt5.ht
m

SAS Institute Inc. (2024, Feb 28). CALL SCAN Routine. Retrieved Feb 2024, from SAS® 9.4 and SAS® Viya® 3.5
Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/n0ecxfx00bn8i4n1vhh8up24ha6x.h
tm#p1j4nd5cxbbj4qn1nmiw4bzsfd92

SAS Institute Inc. (2024, Jan 18). CALL SORTC Routine. Retrieved Feb 2024, from SAS® 9.4 and SAS® Viya® 3.5
Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/n00aheqlqf6qdln1og24z2hcsfd6.ht
m

SAS Institute Inc. (2024, Jan 18). CALL SORTN Routine. Retrieved Feb 2024, from SAS® 9.4 and SAS® Viya® 3.5
Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/p0exzteatvicqkn1bzyzs0qaecy1.ht
m

SAS Institute Inc. (2024, March 24). Functions and CALL Routines. Retrieved from SAS Help Center:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/n0ecxfx00bn8i4n1vhh8up24ha6x.h
tm

SAS Institute Inc. (2024, Jan 18). Pattern Matching Using Perl Regular Expressions (PRX). Retrieved Feb 2024, from
SAS® 9.4 and SAS® Viya® 3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/n13as9vjfj7aokn1syvfyrpaj7z5.htm

SAS Institute Inc. (2024, Jan 18). SAS® 9.4 Functions and CALL Routines: Reference, Fifth Edition. Retrieved Feb
2024, from SAS® 9.4 and SAS® Viya® 3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/titlepage.htm

SAS Institute Inc. (2024, Jan). SORT Procedure. Retrieved Feb 2024, from SAS® 9.4 and SAS® Viya® 3.5
Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n1c1pczk6ogkbsn168zmf4k1izrh.htm#:~:tex
t=The%20main%20features%20of%20the%20ASCII%20sequence%20are%20that%20digits,character%20t
hat%20you%20can%20display.

SAS Institute Inc. (2024, Jan 18). Tables of Perl Regular Expression (PRX) Metacharacters. Retrieved Feb 2024,
from SAS® 9.4 and SAS® Viya® 3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/p0s9ilagexmjl8n1u7e1t1jfnzlk.htm

SAS Institute Inc. (2024, Jan 18). Using Perl Regular Expressions in the DATA Step. Retrieved Feb 2024, from SAS®
9.4 and SAS® Viya® 3.5 Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/p1vz3ljudbd756n19502acxazevk.ht
m

SAS Institute Inc. (n.d.). CALL SYMPUT Routine. Retrieved Feb 2024, from SAS® Visual Data Mining and Machine
Learning 8.1:
https://documentation.sas.com/doc/da/vdmmlcdc/8.1/mcrolref/p09y28i2d1kn8qn1p1icxchz37p3.htm

20

SAS Institute Inc. (n.d.). Scopes of Macro Variables. Retrieved from SAS® 9.4 and SAS® Viya® 3.2 Programming
Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/mcrolref/p1b76sxg9dbcyrn1l5age5j5nvgw.htm

Watson, R. J., & Hadden, L. S. (2022). Functions (and More!) on CALL! Retrieved from
https://tp1210.p3cdn1.secureserver.net/wp-content/uploads/2023/01/Functions_and_More_on_CALL.pdf

Zach. (2023, May 1). How to Use the MISSING Function in SAS (with Examples). Retrieved from Statology.org:
https://www.statology.org/sas-missing-function/

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Lisa Mendez
Catalyst Flex
lisa.mendez@catalystcr.com

Richann Jean Watson
DataRich Consulting
richann.watson@datarichconsulting.com

Any brand and product names are trademarks of their respective companies.

	Abstract
	Introduction
	CALL MISSING
	CALL SYMPUTX
	CALL SCAN
	CALL SORTC / SORTN
	CALL EXECUTE
	CALL PRXCHANGE
	Conclusion
	Acknowledgments
	References
	Contact Information

