
1

PharmaSUG 2023 - Paper AP-061

Going Command(o): Power(Shell)ing Through Your Workload
Richann Jean Watson, DataRich Consulting;
Louise S. Hadden, Independent Consultant

ABSTRACT
Simplifying and streamlining workflows is a common goal of most programmers. The most powerful and
efficient solutions may require practitioners to step outside of normal operating procedures and outside of
their comfort zone. Programmers need to be open to finding new (or old) techniques to achieve efficiency
and elegance in their code: SAS® by itself may not provide the best solutions for such challenges as
ensuring that batch submits preserve appropriate log and lst files; documenting and archiving projects and
folders; and unzipping files programmatically. In order to adhere to such goals as efficiency and portability,
there may be times when it is necessary to utilize other resources, especially if colleagues may need to
perform these tasks without the use of SAS software. These and other data management tasks may be
performed via the use of tools such as command-line interpreters and Windows PowerShell (if available to
users), used externally and within SAS software sessions. We will also discuss the use of additional tools,
such as WinZip®, used in conjunction with the Windows command-line interpreter.

INTRODUCTION
In the early 1960s, mainframe and minicomputer manufacturers developed “disk operating systems” to
control the usage of hard disks and floppy disk drives that allowed access to and storage of sequential and
other data on media. At the time, most computers were using tape drives, or had no storage device at all.
As computers evolved, the concept of a disk operating system (DOS) became more well known, and
different manufacturers developed their own versions, often with “DOS” in the name. In the late 70s and
80s, most home and personal computers were using some form of DOS. The original Mac had its entire
operating system on 3 ½ “floppy” drives, with disks being swapped out for operating commands and file
storage. Eventually, versions of DOS, once loaded from disk, were installed in ROM, and then in computer
chips. The Windows, UNIX, and Linux platforms evolved, usually incorporating, and assimilating various
flavors of the original DOS versions.

The purpose of this paper is to explore the underpinnings and remnants of original DOS versions in the
Windows operating system that still have great utility today and can be used to efficiently perform
operations that would be very difficult, or time consuming as multiple manual point and click operations in
Windows. While we are focusing on the Windows platform in this paper, many of the operations we
describe can also be performed on UNIX and Linux systems via shells such as the Korn shell and BASH.

The two primary tools used in this exploration are the COMMAND-LINE INTERPRETER (CLI), sometimes
referred to as CMD, and PowerShell. Several use cases will be described for each, using system prompts
and utilizing these operating system tools and other command line utilities within instances of SAS via pipes
and the X command. Additionally, SAS runs on command prompts behind the scenes, allowing users to add
and modify parameters contained in the sasv9.cfg file on the fly, and even incorporating an external
configuration file. Examples with code snippets are referred to in the text of the paper, and full sample code
are provided on a Github page (https://github.com/rwatson724/CMD-PowerShell-Scripts). We encourage
readers to check the many references in the paper and documented in the references section for more
detail.

THE BASICS
With all software tools, there are hundreds of commands and diverse syntax. A high-level overview of each
tool is provided, while only the commands to illustrate the examples are detailed. Links to various sites that
have a listing of the commands, and their syntax and options, are provided for future reference.

2

COMMAND-LINE INTERPRETER (CLI) PROMPT
The command-line interpreter (CLI) allows you to type commands at a system prompt. In early versions of
Windows and MS-DOS the CLI was commonly referred to as COMMAND.COM, but with later versions of
Windows it is referred to as CMD.EXE (CMD). (Computer Hope, n.d.)

With the use of the CLI, you can perform tasks that are generally performed in a windowing environment
with a point and click of the mouse. With shell commands in the CLI, you can create batch files or custom
scripts that will allow you to automate many of these tasks or access the CLI within your SAS programs.

Command Prompt (CMD)
In Windows, to access the command-line interpreter, you can enter CMD on the search bar to find the
Command Prompt app as shown in Screenshot 1. Once the Command Prompt is found, you can click on
the app to open the command-line interpreter (Screenshot 2). The authors highly recommend that you pin
your system’s CLI to your task bar for further explorations and uses.

Screenshot 1: Searching for Command-Line Interpreter

3

Screenshot 2: Command-Line Interpreter via CMD

CMD Basics - Variables Versus Parameters
In order to understand some of the commands, we first must understand the difference between a variable
and a parameter. Within CMD there are environment variables. These variables are only available during
the current CMD session and can be referenced in the current CMD session, by enclosing it within % signs.
For example, in Program 1, SAS, PTH, PLOG and PLST are environment variables. They are referenced
in the last line of the batch script in Program 1 by putting a % on each side of the variable. There are some
default environment variables, such as CD (current directory), DATE (current date), TIME (current time).
Note that the format of the date and time will vary based on the system (Sheppard, How-to: Windows
Environment Variables, n.d.).

Parameters also known as arguments are passed in a batch script (Sheppard, How-to: Pass Command
Line arguments (Parameters) to a Windows batch file., n.d.). The value of a parameter can be retrieved by
using its position on the command line preceded by a %. For example, the Program 1 script has two
arguments that are passed: 1. directory of the program; 2. name of the program. In the batch script
(Program 1), the name of the program is referenced as %2 because it is the second argument passed.

set sas="C:\Program Files\SASHome\SASFoundation\9.4\sas.exe" -CONFIG "C:\Program
Files\SASHome\SASFoundation\9.4\nls\en\sasv9.cfg"

set pth=-sysin "C:\Users\gonza\Desktop\Conferences\Drafts\Commando\%1\programs\%2.sas"
set plog=-log "C:\Users\gonza\Desktop\Conferences\Drafts\Commando\%1\Logs\"
set plst=-print "C:\Users\gonza\Desktop\Conferences\Drafts\Commando\%1\Lsts\"
%sas% %pth% %plog% %plst%

Program 1: Sample of a Batch Script – SINGLE.BAT
Within a SAS session, Program 1 can be executed with an X command and the two parameters specified,
“Batch” and “PRXMATCH”. These parameters are passed to the script and used for %1 and %2
respectively.

x "C:\Users\gonza\Desktop\Conferences\Drafts\Commando\SINGLE.bat Batch PRXMATCH";

4

In some commands within a batch file, a parameter will need to be referenced with two %’s (Sheppard,
How-to: Pass Command Line arguments (Parameters) to a Windows batch file., n.d.), which will be
illustrated in the examples below.

CMD Commands and Examples
There are a number of commands that can be used within CMD with each command having its own set of
arguments and options. The following are a list of some of the commands that are illustrated in this paper.
The commands used in the paper are at a high level and a brief description of how they work are provided.
For a full list of Windows CMD commands, options and extensive details visit SS64.com (Sheppard, An A-Z
Index of Windows CMD commands., n.d.).

SET
The first command used is the SET command. This assigns values to environment variables. The SET
command can assign a string or use an expression.

Sheppard op. cit

The expression can utilize other environment variables as seen in the example below. DY, MO and YR use
the environment variable date and parses the necessary string to assign the value. Note that date is a
default environment variable, and the format of the date will vary based on the system. For this example,
date is stored as “Day MM/DD/YYYY”, where Day is the three-character abbreviation for the day of the
week, MM represents the two-digit month, DD is the two-digit day and YYYY is the four-digit year. When
parsing the string, it starts at 0 and not 1, therefore, while it may seem that month would start in the 5th
position, it is actually the 4th position since Day starts in the 0th position.

Display 1: DATE Environment Variable
If the following code is run on Thursday, Feb 9, 2023, then date = ‘Thu 02/08/2023’ (Display 1), then it
should yield the individual components. These individual components can then be combined to create a
new date in the desired format (Display 2).

set dy=%date:~7,2%  09
set mo=%date:~4,2%  02
set yr=%date:~10,4%  2023
set today=%yr%-%mo%-%dy%  2023-02-09
set runday=%today%  2023-02-09

SET Syntax Description
Creating, removing or displaying
an environment variable. The
variable is only available during
the current CMD session and the
variable name itself is not case
sensitive but the value can be.
Spacing is NOT ignored.

SET variable
SET variable=string
SET "variable=string"
SET "variable ="

SET /A "variable=expression "
SET /P variable=[promptString]
SET "

variable new or existing environment variable name
string text string to assign to the variable
expression arithmetic expression
/A see documentation for details on arithmetic expressions
/P prompt for user input

To delete a variable use SET "variable=". This will ensure there is no trailing space
after the equal sign. You can also use (SET variable=).

5

Display 2: Extracting Date Components from DATE Environment Variable

DIR
The DIR command lists all the files and subfolders in the indicated folder. Depending on the options used,
we can filter for specific files.

For example, if we want to only list the files and not the subfolders within the current directory, the option
“A:-D” is used. “A” indicates all files which by default includes the subfolders and “-D” indicates exclude the
subfolders. In addition, we can look for files with specific naming convention and/or specific extensions. In
the example below rcvd (environment variable that contains the folder) is scanned and a zip file that has a
name that contains the value that is captured in today is searched. The option /O:-D indicates that the files
are to be sorted by descending date and time. Therefore, if there are more than one file found, it would
retrieve the file with the latest date and time. If the file is found the option /B indicates that only the file
name is to be returned, that is the metadata associated with the files is not returned. In the example shown
in Display 3, even though there are two zip files found with the date of ‘2023-02-09’, the ‘For SAS – 2023-
02-09.zip’ had a later creation and therefore is listed first due to the option /O:-D.

DIR "%rcvd%*%today%*.zip" /B /O:-D

DIR Syntax Description
Displays a list of all files and
folders in the indicated drive or
folder.

DIR [pathname(s)] [display_format]
[file_attributes] [sorted] [time]
[options]

Pathname can be the drive, folder or files that are to be displayed and can use
wildcards.

Wildcards:
 * match on any characters
 ? match on any ONE character

[file_attributes] options:
 /A All Files
 /A:D Folder /A:-D NOT Folder
 /A:R Read-only /A:-R NOT Read-only
 /A:H Hidden /A:-H NOT Hidden

[sorted] options:
 /O:N or /O:-N Name
 /O:D or /O:-D Date & time

[time] options:
 /T:C Creation
 /T:A Last Access
 /T:W Last Written (default)

Other available options:
 /B Bare format (no heading, file sizes or summary)
 /S Include subfolders
 /4 Display four-digit year

6

Display 3: Retrieving Files with a Specific Naming Convention Using DIR Command

MKDIR (MD)
In addition, to listing out the contents in a directory, we can create a new directory.

Although the example, below shows two separate statements to make two new directories within the current
directory. This could have been achieved by specifying both directories on the same command line (e.g.,
mkdir __TEMP %today%). Note that to make a directory, the commands MKDIR and MD can be used
interchangeably.

mkdir __TEMP
mkdir %today%

RMDIR (RD)
If we can create new directories, then it makes sense that we can also remove directories. However, with
removing directories there are options that can be incorporated to indicate if the entire folder tree (i.e.,
subfolders) are to be deleted and if you don’t need confirmation to delete. To remove the entire tree the /S
option is used and to remove the folder without asking for confirmation uses the /Q option.

In the example below the temporary folder __TEMP is removed in the current directory, CD. CD is default
environment. Similar to making a directory, there are two commands that can be used to remove a
directory, RMDIR and RD.

rmdir /s /q "%CD%__TEMP\"

MKDIR (MD) Syntax Description
Make a new directory or folder.

Either MD and MKDIR can be
used. Both will make a new
directory or folder.

MD [drive :]path [[drive :]path ...] path directory or folder to be created

Spaces (including tabs), commas and semicolons can be used in the folder name;
however, they must be enclosed in quotation marks.

Multiple directories can be created on the same command line.

RMDIR (RD) Syntax Description
Remove or delete a directory or
folder.

Either RD and RMDIR can be
used. Both will make a remove or
delete directory or folder.

RD pathname
RD /S pathname
RD /S /Q pathname

pathname directory or folder to be removed or deleted

Available options:
 /S remove an entire folder tree
 will delete main folder as well as all files and subfolders

 /Q quiet
 does not ask for confirmation of deletion

Long pathnames should be place in double quotes.

Note that without the /S option, only empty directories will be deleted.

7

DEL
DEL allows us to specify one or more files to delete. The use of wildcards can be used with part of a
filename to identify file(s). There are additional options that be used when determining what deletions are
allowed. For example, /S indicates that subfolders should be searched as well, and the file(s) deleted from
the subfolders. In addition, /P option allows us to indicate that a Yes/No prompt is needed before deleting.
By default, the file(s) will be deleted without a prompt. Note that ERASE command can also be used
instead of DEL.

In this example, the file __TEMPTEXT.TXT is deleted.

del __TEMPTEXT.TXT

MOVE
MOVE allows us to move one or more files from one location to another location. With the MOVE command
we can choose to have a prompt asking to confirm the overwriting of files when the source is moved to the
target and the target already has a file with the same name. If executing the MOVE command within a batch
script, the default is to overwrite without the prompt. If running at the command line, the default is to prompt
for an overwrite. Within the MOVE command wildcards are allowed on the source argument but not on the
target.

In this example parameter A is moved to a subfolder which resides in the current directory (CD). The name
of the subfolder is contained within the environment variable, today.

move "%%A" "%CD%\%today%\"

DEL Syntax Description
Delete file(s) that are specified. DEL [options] [file_attributes]

files_to_delete
files_to_delete file(s) that are to be deleted
 can use wildcards

Wildcards:
 * match on any characters
 ? match on any ONE character

Available options:
 /P Yes/No Prompt before deleting
 /F Ignore read-only setting and delete anyway (FORCE)
 /S Delete from all Subfolders (DELTREE)
 /Q Quiet mode, do not give a Yes/No Prompt before deleting.

[file_attributes] options:
 /A:R Read-only /A:-R NOT Read-only
 /A:H Hidden /A:-H NOT Hidden

MOVE Syntax Description
Move file(s) from one location to
another location

MOVE [options] [source] [target] source path and filename of the file(s) to move
 can include wildcards
target path and filename to move file(s) to

Wildcards:
 * match on any characters
 ? match on any ONE character

Available options:
 /Y suppress confirmation prompt, when overwriting files
 /-Y enable confirmation prompt, when overwriting files

8

ECHO
To display a message to the screen, we use the ECHO command, ECHO ON. To prevent the messages
from displaying to the screen we can turn off the ECHO command with ECHO OFF. Be default ECHO is
on. The ECHO command can be used to display specific messages or to display help information. When
using the ECHO command, the message does not always have to be displayed to the screen. It can be
redirected to an external file by using ‘>’ after the message and specifying the name of the file after ‘>’.

For example, the message below “ZIP file is %rcvdfile%” is written to an external file that is located in the
current directory (CD) and named unzip_%runday%.txt. Both rcvdfile and runday are environment
variables that contain the name of the file and the run date.

echo ZIP file is %rcvdfile% > "%CD%\unzip_%runday%.txt"

GOTO
With the GOTO command, we can ‘jump’ to a location that has a specific label within the batch script. The
GOTO command uses the label to indicate where we need to move to. If the GOTO command’s label is
:EOF, this indicates we are to exit the current subroutine or script. Note that it is possible to have label of
EOF (i.e., there is no preceding colon) and use that on a GOTO command. If the GOTO command indicates
that we are to jump to the line labelled EOF, it should be specified as GOTO EOF (i.e., without the colon
preceding EOF). This would behave differently than the label :EOF. In other words, GOTO EOF moves to
the location in the script that is labelled EOF, where GOTO :EOF will exit. Although it is allowed to have
EOF as a label, this can be easily confused with :EOF, thus it is best to avoid using EOF as a GOTO label.

We can use conditional logic to determine where we need to go to next in the script. In this example, if the
condition is true, then we are to jump to a line name FoundFile. Further, in the script will be a line with the
label :FoundFile. Thus, if rcvdfile is set to a value (i.e., not null), then we move to the :FoundFile location
in the script.

if defined rcvdfile (goto FoundFile)
...
:FoundFile

ECHO Syntax Description
ECHO by default is turned on.
ECHO displays a message to the
screen.

ECHO [ON | OFF]
ECHO [message]
ECHO /?

ON display each line of the batch script on screen
OFF only display the command output on screen
message display a string of characters on the screen
? display help

The use of the @ symbol at the start of a line in a batch file is equivalent to using
ECHO OFF for the current line.

Note that the message can be redirected to an external file if necessary by using the
following syntax
ECHO [message] > Filepath\Filename
If the Filepath is not specified, then it will write to the current directory.

GOTO Syntax Description
Direct batch program to move to
the line that has the indicated
label .

GOTO label

GOTO :eof

label predefined label in the batch program
 label must be defined on a line by itself
 label must be preceded with a colon and end with a color, space or
 a carriage return/line feed

:eof predefined label that will exit the current subroutine or script

Note that GOTO EOF and GOTO :EOF are not the same. It is possible to create a
label EOF (i.e., without the colon on the GOTO statement). However, this could cause
confusion so it is best to avoid it.

9

CALL
With the CALL command, we can execute a specific subroutine within the current batch script or call an
external batch script.

In this section, CALL is being used to reference a subroutine named UnZipFile. The CALL routine specified
two arguments for the UnZipFile subroutine. The first argument indicates the extraction location which is a
subfolder named __TEMP within the current directory (CD). The second argument is the full path and
name of the file to be unzipped. The path is stored in the environment variable, rcvd, and the name of the
file is stored in the environment variable, rcvdfile.

call :UnZipFile "%CD%__TEMP\" "%rcvd%\%rcvdfile%"
...
:UnZipFile <ExtractTo> <newzipfile>
...

IF/IF-ELSE
Conditional logic can help us determine which portions of the script need to be executed. A condition is
checked to see if it is true and if it is the indicated command is executed. Otherwise, if IF-ELSE is used, the
else command is executed. If multiple commands need to be executed based on the condition, then the
commands need to be enclosed within parenthesis.

Using the same example, we use to illustrate GOTO, we now expand this to indicate an ELSE condition. If
we do not find a file, instead of going to the labelled line FoundFile, we go to the labelled line NoFile.

if defined rcvdfile (goto FoundFile) else goto NoFile

CALL Syntax Description
Call a batch script or subroutine
within another

CALL [drive :][path]filename
[parameters]
CALL :label [parameters]

pathname fullpath and name of another batch script to run
parameters command-line argument
:label jump to a labelled line in the current batch script

IF / IF-ELSE Syntax Description
IF [NOT] EXIST filename command

IF [NOT] EXIST filename (command)
ELSE (command)

Checks to see if a file exists (or does NOT exist).

Note that a wildcard pattern can be used for the filename

IF [/I] [NOT] item1 ==item2 command
IF [/I] [NOT] "item1 " == "item2 "
command

IF [/I] item1 compare-op item2
command

IF [/I] item1 compare-op item2
(command) ELSE (command)

Compares a text string or environment variable to another text string or environment
variable.

String comparisons:
 /I : indicates that the comparsion is case insensitive
 == : two strings are equal

Numeric comparisons:
 EQU : Equal
 NEQ : Not equal
 LSS : Less than (<)
 LEQ : Less than or Equal (≤)
 GTR : Greater than (>)
 GEQ : Greater than or equal (≥)

Note that < and > cannot be used for numeric comparisions, since these symbols are
redirection operators.

IF [NOT] DEFINED variable command Checks to see if a variable is null or if it exists.

If the condition is met, then it
executes the indicated command .
If using IF-ELSE, then if condtion
is not met, then the ELSE
command is executed.

If command contains multiple
commands, then they are to be
embedded in parenthesis. The
use of parenthesis allows for
more complex logic.

10

FOR
FOR is similar to a do loop in that it executes a command each time the specified condition is met. As
mentioned previously when discussing the difference between environment variables and parameters, we
indicated that some commands require the use of two % when referencing the parameter. The FOR
command when used within a batch script requires the use of two %.

Here we illustrate two examples of the FOR command. The first one indicates that the FOR loop is to be
executed for a set of files (/F). FOR command searches the directory specified by the environment
variable, rcvd, for a zip file. Note that as the FOR command loops through each file the file name is passed
to parameter I. If the condition is met (i.e., the file is a zip file), then the commands are executed. In this
case, the files are scanned in descending date time order (O:-D) using the creation date (T:C) and
subfolders are excluded (A:-D) and we are only concerned about the file name, so we retrieve the ‘bare
format’ (/B) (i.e., we don’t need the date, file size, etc.).

for /F "delims=|" %%I in ('DIR "%rcvd%*.zip" /A:-D /B /O:-D /T:C') DO (
set rcvdfile=%%I
goto FMTDate
)

The second example of the FOR command utilizes the /R option. This indicates that all folders and
subfolders at the indicated location (%CD%__TEMP\) are to be searched for SAS7BDAT files. As each file
within the current location and within each folder/subfolder is scanned, the file name is passed to the
parameter, A. If a SAS7BDAT file is found then the file is moved to a folder within the current directory that
has a name that is indicated by the environment variable, today.

for /R "%CD%__TEMP\" %%A in (*.sas7bdat) do move "%%A" "%CD%\%today%\"

FORFILES
The FORFILES executes a set of commands for each file selected. Unlike the FOR command, which is a
looping command and only executes the command(s) if the condition is met. FORFILES uses the current
location by default, or a directory can be specified. To select certain files to perform the command(s) on,
the search criteria is preceded by /m. Each command that is to be performed on the file is identified with /c.

FOR Syntax Description
FOR %%parameter IN (set) DO
command

%%parameter is set to a value for each iteration of the FOR loop that is executed on
several files.

FOR /F ["options"] %%parameter IN
(filenameset) DO command
FOR /F ["options"] %%parameter IN
("Text string to process ") DO
command

%%parameter is set to a value for each iteration of the FOR loop that is executed on a
set of files. Filenameset is a one or more files. For a filenameset it parses the
contents of the file one line at at time. The contents in the file are broken up into
tokens.

Available options:
 delims=xxx delimiter character(s)
 default for strings is a space or TAB

 tokens=n indicates which numbered items to read from each line
 default is 1
 multiple tokens are separated by a comma

FOR /R [[drive:]path] %%parameter IN
(set) DO command

FOR loop that traverses down the sub-directories starting at the [drive:]path looking
for a match in the set . [drive:]path is the directory where the expected files are
located. Set is one or more files specified with wildcards enclosed in parenthesis.

Note that if [drive:]path is not specified then the current directory is used.

Perform a command multiple
times if the condition is met.

If command contains multiple
commands, then they are to be
embedded in parenthesis. The
use of parenthesis allows for
more complex logic.

Note that the first parameter is
defined using a single character
that is case sensitive and is
replaceable. If FOR loop is used
in a batch program, then the
parameter is defined with two
percent signs. If the FOR loop is
used at the command line, then
only one percent sign is used.

11

In the snippet of code below, we are searching through the folder that is indicated by the environment
variable, rcvd, for a file that matches the selection criterion specified. /M indicates that we are searching for
a file that has the name that is captured in the __rcvdfile environment variable. /C indicates we are issuing
a command to write the file date to temporary file.

forfiles /P "%rcvd%" /M %__rcvdfile% /C "cmd /c echo @fdate" > __TEMPTEXT.TXT

Note that FORFILES only retrieves modification date. It does not retrieve creation date.

EXIT
To close the current CMD session or the current batch script, the EXIT command is used. Within a batch
script, the option /B can be used to exit a subroutine without ending the entire CMD session.

Using the same example above, once the subroutine has been executed, the message indicated on the
ECHO command is written to an external file and this portion of the script is exited.

call :UnZipFile "%CD%__TEMP\" "%rcvd%\%rcvdfile%"
echo - File %rcvd%\%rcvdfile% has been unzipped >> "%CD%\unzip_%runday%.txt"
exit /b

POWERSHELL

PowerShell
In Windows, to access PowerShell, you can enter PowerShell on the search bar to find the PowerShell app
as shown in Screenshot 3. If you have a 64-bit device, when PowerShell is installed, PowerShell (x86) is
also installed by default to allow you to run a 32-bit version of PowerShell (Microsoft, n.d.). Once
PowerShell is found, you can click on the version of the app needed to open PowerShell (Screenshot 3 and
Screenshot 4).

FORFILES Syntax Description
Perform a command for the
indicated file(s) selected.

The command should be
wrapped in double quotes.

FORFILES [/p path] [/m srchmask] [/s]
[/c command]

/p path path where expected file is located
 default = current folder

/m srchmask criteria to select the file

/c command command to be executed for each file selected
 default = "cmd /c echo @file"

Additional Command Variables that can be used in the command string:
 @file name of the file.
 @fname file name without extension
 @fdate last modified date of the file
 @ftime last modified time of the file

EXIT Syntax Description
Closes the CMD session or can
be used to close the current
batch script or the exit the current
subroutine.

EXIT [/B] [exitCode] /B exits the script or subroutine when used within a batch script and does not
 close the CMD session
 if used on the command-line within CMD, then it closes the CMD session

12

Screenshot 3: Searching for PowerShell

Screenshot 4: PowerShell

PowerShell Commands and Examples
As does CMD, PowerShell has a number of commands, each with its own set of arguments and options,
that can be utilized. For this paper we only list the ones used in the scripts found in the on GitHub
(https://github.com/rwatson724/CMD-PowerShell-Scripts) and only a high level and a brief description of
how they work are provided. For a full list of PowerShell commands, options and extensive details visit
SS64.com (Sheppard, An A-Z Index of Windows PowerShell commands, n.d.).

13

NEW-VARIABLE
On our journey to understanding PowerShell, we start with the creation of a new variable. All variables start
with a $.

Sheppard op. cit

There are several ways to create a new variable. The object can use a cmdlet (function), a text string, a
mathematical operation. In the example, below the new variable is created using a cmdlet. We created
three date variables. Notice the $ that precedes the name of the variable.

$today_hyp = get-date -format "yyyy-MM-dd"
$today_noh = get-date -format "yyyyMMdd"
$today_uns = get-date -format "yyyy_MM_dd"

GET-DATE
GET-DATE retrieves the current date and time. With the various options available, we can decide if we want
to display only the date or only the time. In addition, we can decide how to display the date and/or time.

NEW-VARIABLE (NV) Syntax Description
Create a new variable New-Variable

 [-Name] string [[-value] object]
 [-scope string]
 [-description string]
 [-Visibility {Public | Private}]
 [-option {None | ReadOnly |
 Constant | Private |
 AllScope}]
 [-force] [-passThru] [-whatIf]
 [-confirm]

-Name
 The variable(s) name.

-Value object
 The value assigned to the variable.

-Scope string
 The scope where the variable is valid. Valid values are "Global", "Local", "Private"
 or "Script", or a number relative to the current scope. "Local" is the default.

-Description string
 A description of the variable.

 -Option string
 Where the new variable should be visible/changeable:
 Valid values are:
 None Set no options. ("None" is the default.)
 ReadOnly The value of the variable cannot be changed except by using
 the Force parameter. However, the variable can be deleted.
 Constant The variable properites cannot be changed nor can the variabled
 be deleted.
 Private Only available within the specified scope.
 AllScope The variable is copied to any new scopes that are created.

-Force
 Override restrictions as long as security is not compromised.
 Allow the creation of a new variable that has the same name as an existing read-only
 variable.

-Visibility {Public | Private}
 Whether the variable is visible outside of the session in which it was created.

GET-DATE Syntax Description
Retrieves the current date and
time

Get-Date [[-date] DateTime]
 [-displayHint
{Date|Time|DateTime}]
 {[-format string] |
 [-uFormat string]}
 [-year int] [-month int] [-day int]
 [-hour int]
 [-minute int] [-second int]
 [CommonParameters]

-date DateTime
 By default, Get-Date returns the current system date and time.
 The -date parameter allows you to specify a specific date and time.

 -displayHint DisplayHintType
 Display only the Date, only the Time or the DateTime.

 -format string
 Display the date and time in the indicated format.

-uFormat string
 Display the date and time in Unix format.

-year -month -day -hour -minute -second
 Specify individual date/time components to be displayed.

14

Using the same example for NEW-VARIABLE, we see that we used the GET-DATE command to retrieve
the current system date. In addition, we utilized the format option to create one date with hyphens, one
date without hyphens and a date with underscores. Notice the use of capital ‘MM’ to indicate the two-digit
numeric month. The format for month and minute is case sensitive. A lower case ‘mm’ is used for the two-
digit minute (Sheppard, How-to: Standard DateTime Format patterns for PowerShell:, n.d.).

$today_hyp = get-date -format "yyyy-MM-dd"
$today_noh = get-date -format "yyyyMMdd"
$today_uns = get-date -format "yyyy_MM_dd"

Note that if a format is not specified then GET-DATE returns the current date and time in the long date and
long time format (Display 4).

Display 4: Default GET-DATE Output

GET-VARIABLE and WRITE-HOST
GET-VARIABLE is used to retrieve the value of a variable that has been created.

To retrieve the value of a variable created GET-VARIABLE or GV can be used to write. When retrieving the
value of a variable the use of the $ is not needed. Both commands produce the same result as seen in
Display 5.

Display 5: GET-VARIABLE and GV Default Output

GET-VARIABLE (GV) Syntax Description
Retrieve the variables Get-Variable [[-Name] string []]

 [-Include string] [-exclude string]
 [-valueOnly] [-scope string]
 [CommonParameters]

-Name
 The name of the variable(s).

-include string
 Retrieve only the specified items. Wildcards are permitted.

-exclude string
 Omit the specified items. Wildcards are permitted.

-valueOnly
 Get only the value of the variable.

-scope string
 The scope where the alias is valid. Valid values are "Global", "Local", "Private"
 or "Script", or a number relative to the current scope. "Local" is the default.

15

By default, GET-VARIABLE displays both the name of the variable and the value. However, the use of the
option -VALUEONLY will suppress displaying the variable name. Notice that the option is not case
sensitive, nor does it have to appear after the variable (Display 6).

Display 6: GV with -VALUEONLY Option
Another way to display the value of a variable is to use WRITE-HOST.

WRITE-HOST by default displays only the value (i.e., the name is not displayed) as seen in Display 7.
Another difference between GV and WRITE-HOST is that GV did not require the use of $ when specifying
the variable; however, WRITE-HOST does require the $ to precede the variable name.

Display 7: WRITE-HOST Output

GET-LOCATION
To retrieve the current location, we use GET-LOCATION or GL.

Notice the two different syntax used to retrieve the current location. We can use GET-LOCATION (or GL)
or we can use (GL).path; both yield the same results (Display 8).

Display 8: GET-LOCATION Output

WRITE-HOST Syntax Description
Writes a string for display.
Typically written to the console
but can be directed to any host.

Write-Host [[-object] Object]
 [-noNewLine]
 [-separator Object]
 [-foregroundcolor ConsoleColor]
 [-backgroundColor ConsoleColor]
 [CommonParameters]

-object Object
 Object to display, typically a string.

-noNewLine
 Do not end with a newline character.

-separator
 String to output between objects displayed on the console.

GET-LOCATION (GL, PWD) Syntax Description
Retrieve and display the current
location

Get-Location [-psDrive string []]
 [-psProvider string []]
 [-UseTransaction]
 [CommonParameters]

Get-Location [-stack]
 [-stackName string []]
 [-UseTransaction]
 [CommonParameters]

-psDrive
 Retrieve the current location of the specified PowerShell drive.

-stack
 Display locations in the default path stack

-stackName
 Display locations in the specified path stacks.

16

GET-CHILDITEM
The GET-CHILDITEM command retrieves all the files and subfolders in the indicated path. Depending on
the options used, we can filter for specific files. GET-CHILDITEM has several aliases that can also be
used: GCI, DIR and LS.

For example, if we want to only list the zip file that has a specific naming convention within the current
directory, then the option -PATH is used to point to the folder and the option -FILTER are used. In the
sample below, -PATH indicates that the path stored in the variable rcvd is to be searched. In addition, the
-FILTER option specifies that only files with the naming convention *$today_hyp$.zip are to be retrieved.
Recall from a previous example that today_hyp is the current date in YYYY-MM-DD format; therefore, we
are looking for zipped files that have the current date in the YYYY-MM-DD format.

get-childitem -path $rcvd -filter *$today_hyp*.zip

GET-CHILDITEM (GCI) Syntax Description
Retrieves the item or child items
in a folder.

Get-ChildItem [[-path] string [] |
 [-literalPath] string []]
 [-Attributes FileAttributes]
 [[-filter] string] [-include string []]
 [-exclude string []]
 [-FollowSymlink] [-Depth UInt32]
 [-Name] [-Directory] [-File] [-Hidden]
 [-ReadOnly] [-recurse] [-force]
 [-System] [-UseTransaction]
 [CommonParameters]

-path string
 The paths to the items from which content is to be retrieved.
 Wildcards are permitted. Default is the current directory (.)

-literalPath string
 Like Path above, only the value is used exactly as typed (i.e., no wildcards).
 If the path includes any escape characters they are enclosed in single quotation
 marks.

 -Attributes {ReadOnly | Hidden | System | Directory | Archive | Device | Normal |
 Temporary | SparseFile | ReparsePoint | Compressed | Offline |
 NotContentIndexed | Encrypted | IntegrityStream | NoScrubData}
 Use the following operators to combine attributes.
 ! NOT
 + AND
 , OR
 No spaces are permitted between an operator and its attribute.

 Abbreviations for commonly used attributes:
 D Directory
 H Hidden
 R Read-only
 S System

-include string
 Include only the specified items from the path. e.g. 'May*'. Wildcards are permitted.
 This works with the -recurse parameter.

-exclude string
 Omit the specified items from the path e.g. '*SS64*'. Wildcards are permitted.

-filter string
 A string that is used to filter what is retrieved. Wildcards are permitted.

-recurse
 Retrieve the items plus all child items of the location(s) (i.e., items in subdirectories).

17

NEW-ITEM
NEW-ITEM allows us to create new items such as files and folders. When using NEW-ITEM (alias NI) to
create a new item, we need to indicate the ITEMTYPE (alias IT). In order to create a new directory we use
the option DIRECTORY.

The following code creates a new directory (-IT DIRECTORY). If you do not specify the IT, the default is to
create a file. Notice the three different ways to implement the logic to create a new folder name __TEMP
that will reside under the

ni -path $PgmPath__TEMP -it directory
ni -it directory __TEMP
ni -path $PgmPath -name __TEMP -it directory

REMOVE-ITEM
Comparable to the RMDIR and DEL commands in CMD, REMOVE-ITEM cmdlet in PowerShell allows us to
remove specified items. The main difference is that RMDIR only removes directories and DEL only removes
files while REMOVE-ITEM (aliases DEL, RI) allow us to remove directories or files.

Here we are deleting the temporary folder (_TEMP) and we indicate that we want to remove all the items in
the folder along with any child items (i.e., subdirectories). In addition, we want to force the deletion of the
__TEMP folder and all its childitems regardless of any restrictions placed on the folder.

remove-item $PgmPath__TEMP -recurse -force

NEW-ITEM (NI) Syntax Description
Create a new item (e.g., files,
folders) in the namespace

New-Item [-name] string [-path string]
 [-force] [-credential PSCredential]
 [-itemType string]
 [-value object] [-whatIf] [-confirm]
 [-UseTransaction]
 [CommonParameters]

-name string
 The name of the new item.

-path string
 The path(s) to the items. Wildcards are permitted.
 A dot (.) is used to specify the current location.

-itemType string
 Specified type of the new item: file, directory, SymbolicLink
 "it" is an alias for "itemType".

REMOVE-ITEM (DEL, RI) Syntax Description
Removes the specified item Remove-Item { [-path] string [] |

 [-literalPath] string [] }
 [-include string []] [-exclude string []]
 [-filter string] [-stream string []]
 [-recurse] [-force] [-whatIf] [-confirm]
 [-credential PSCredential]
 [-UseTransaction]
 [CommonParameters]

Remove-Item [-stream string]
 [CommonParameters]

-Path string []
 The path (or paths) to the items to be removed. Wildcards are permitted.

-LiteralPath string
 Like Path above, only the value is used exactly as typed (i.e., no wildcards).
 If the path includes any escape characters they are enclosed in single quotation
 marks.

-include string
 Remove only the specified items from the path. e.g. "May*"
 Note: this only works when the path includes a wildcard character.

-exclude string
 Do not remove the specified items from the Path e.g. "*SS64*"
 Note: this only works when the path includes a wildcard character.

-recurse
 Delete the items plus all child items of the location (i.e., items in subdirectories).

-force
 Override restrictions that prevent the command from succeeding.

18

MOVE-ITEM
MOVE-ITEM cmdlet in PowerShell is akin to the MOVE command in CMD. They both move an item from
one location to another.

Here we illustrate the moving of the SAS data sets found in the __TEMP folder found at the location
indicated by the pgmpath variable to a location specified by the uzdir variable. Notice that we use GCI to
retrieve only the SAS data sets from the specified location and that we are also looking at subdirectories
within the location.

gci $PgmPath__TEMP -recurse -include *.sas7bdat | move-item -dest $uzdir

WRITE-OUTPUT
WRITE-OUTPUT is equivalent to ECHO. This allows us to write an object to the console or with the use of
additional commands we could write to an external file.

For the example below the value of the variable uzdir along with the additional text string “folder was
created” is written to the console.

echo "- $uzdir folder was created"

Display 9: ECHO Writing to Console

MOVE-ITEM (MI) Syntax Description
Move an item from one location to
another location.

Move-Item { [-path] string [] |
 [-literalPath] string [] }
 [[-destination] string]
 [-include string []] [-exclude string []]
 [-filter string] [-force]
 [-credential PSCredential]
 [-PassThru]
 [-Confirm] [-WhatIf]
 [-UseTransaction]
 [CommonParameters]

-Path string []
 The path (or paths) to the items to be moved. Wildcards are permitted.

-LiteralPath string
 Like Path above, only the value is used exactly as typed (i.e., no wildcards).
 If the path includes any escape characters they are enclosed in single quotation
 marks.

-destination
 The path to the location where the items are to be moved. Wildcards are permitted.
 The default is the current directory. Alias for "destination" is "dest".

-include string
 Include only the specified items from the path. e.g. "May*"
 Note: this only works when the path includes a wildcard character.

-exclude string
 Exclude the specified items from the Path e.g. "*SS64*"
 Note: this only works when the path includes a wildcard character.

WRITE-OUTPUT (ECHO, WRITE) Syntax Description
Writes an object to the pipeline. If
it is the last command in the
pipeline, it writes it to the console.

Write-Output [-inputObject] object []
 [CommonParameters]

-inputObject object
 The object(s) that is written to the pipeline. This could be a variable, command or an
 expression.

19

OUT-FILE
ECHO by default writes to the console if it is the last command. However, if we want to redirect the output
to a file, we can use OUT-FILE. If there are several items being redirected to the same file, but we don’t
want to overwrite the other information in the output file, we can use the -APPEND option to add to the
existing output.

Continuing with the example from ECHO, we now want to redirect the message to an external file instead of
writing it to the console. We can specify the OUT-FILE command along with the name of the file that the
output should be written to. In addition, -APPEND is used so that any information already in the file is not
overwritten.

echo "- $uzdir folder was created" | out-file $pgmpath\unzip_ps_$today_hyp.txt
-append

TEST-PATH
Sometimes we need to check to see if a directory exists prior to proceeding to the next step. TEST-PATH
allows us to check for that existence.

In Display 10, we illustrate the use of TEST-PATH. A variable currpath is created to store the current
location. In addition, a new variable confpath has been created to store the location of the folder we want
to do some sort of process on. In the first iteration for the creation of confpath, the ‘o’ was left off and when
TEST-PATH is executed, it fails to find the indicated path and returns a value of False. The second time we
create confpath, we include the ‘o’ and execute TEST-PATH again and this time it finds the path and
returns a value of True.

OUT-FILE Syntax Description
Send the output to a file. Out-File [-filePath] string

 [[-encoding] string]
 [-append] [-width int]
 [-inputObject psobject]
 [-force] [-noClobber] [-whatIf]
 [-confirm] [CommonParameters]

-filePath path
 The path to the output file.

-append
 Add the output to the end of an existing file, instead of overwriting the file contents.

-force
 Override restrictions that prevent the command from succeeding.

-noClobber
 Does not overwrite (replace the contents) of an existing file.
 If both -append and -noClobber are specified, the output is appended.

By default out-file, overwrites an existing file.

TEST-PATH Syntax Description
Checks to see if a path exists Test-Path { [-path] string [] |

 [-literalPath] string [] }
 [-pathType TestPathType] [-isValid]
 [-include string []] [-exclude string []]
 [-Filter string]
 [-credential PSCredential]
 [-UseTransaction]
 [CommonParameters]

-Path string []
 The PowerShell path (or paths) tested to see if it exists. Wildcards are permitted.

-LiteralPath string
 Like Path above, only the value is used exactly as typed (i.e., no wildcards).
 If the path includes any escape characters they are enclosed in single quotation
 marks.

Note that currently Test-Path will return $true if the path is a single space. To avoid
this trim the string with trim().

20

Display 10: TEST-PATH Output

IF/IF-ELSEIF-ELSE
Like CMD, conditional logic can help us determine which portions of the script need to be executed. If a
specific condition is met, then the command(s) indicated are executed. Within PowerShell, the condition is
placed in parentheses (), while the commands that are to be executed are placed within curly braces { }.

Continuing with the example used for TEST-PATH, we can incorporate the condition into an IF statement,
to confirm the path does exist before continuing to the next portion of the script. In the snippet of code
below, we check for the existence of the path before we precede to the commands that are to be executed.
Notice that commands to be executed can be additional IF/IF-ELSEIF-ELSE logic. Each command is
enclosed within parentheses and each set of commands that correspond to IF or ELSEIF or ELSE are
contained within the curly braces.

if (Test-Path $rcvd.trim())
{
 ## COMMANDS TO BE EXECUTED
 if ($rcvdfile)
 {
 ## COMMANDS TO BE EXECUTED
 if (-Not (Test-Path $uzdir.trim()))
 {
 ## COMMANDS TO BE EXECUTED
 }
 else
 {
 ## COMMANDS TO BE EXECUTED
 }
 }
 else
 {
 ## COMMANDS TO BE EXECUTED
 }
}

IF / IF-ELSEIF-ELSE Syntax Description
If the condition is met, then it
executes the indicated command.
If using IF-ELSEIF, then if
condtion is not met, then the
ELSE command is executed.

if (condition) {commands_to_execute }
[elseif (condition2)
 {commands_to_execute }]
[else {commands_to_execute }]

-condition
 An expression that is evaluated to true or false.

-commands_to_execute
 A PowerShell or an external command that is executed if the expression is true.

Note that the parentheses () are placed around the condition that is to be checked,
while the curly braces { } are placed around the commands that are to be executed.

21

SORT-OBJECT
SORT-OBJECT allows us to sort the object by the specified property value (e.g., creationtime, lastwritetime,
length, fullname). To find a complete list of properties, specify gci | gm -membertype *property
(Sheppard, How-to: Some basic PowerShell principles - Objects, Methods and Properties, n.d.).

For the following example, we are sorting by the creationtime.

sort-object -property creationtime

SELECT-OBJECT
With SELECT-OBJECT we are able to retrieve various properties about the specified object(s).

In this example, we are going retrieve a child item from the file, rcvdfile, in the indicated location, rcvd.
However, we only want certain properties associated with the object. In this case we want the
creationtime of the indicated object and we want the creationtime stored in the variable fdate in

YYYY-MM-DD format (Display 11).

$fdate = $(gci $rcvd\$rcvdfile | select -expandproperty creationtime | get-date
-f "yyyy-MM-dd")

Display 11: Illustration of SELECT-OBJECT

SORT-OBJECT (SORT) Syntax Description
Sorts the object by property value Sort-Object [[-property] Object []]

 [-inputObject psobject]
 [-culture string]
 [-caseSensitive] [-unique]
 [-descending] [CommonParameters]

-Property Object
 The objects are sorted based on the values of the indicated properties (e.g.,
 creationtime). Wildcards are permitted.

-CaseSensitive
 Sort UPPER and lower case letters separately.

-Descending
 Sort in descending order. The descending parameter applies to all properties.

SELECT-OBJECT (SELECT) Syntax Description
Select properties from the
specified object or set of objects

Select-Object [[-property] Object []]
 [-excludeProperty string []]
 [-expandProperty string] [-first int]
 [-last int]
 [-Skip int] [-unique]
 [-inputObject psobject]
 [CommonParameters]

-Property Object []
 The property or properties that are to be selected.

-ExcludeProperty string
 Properties that are not to be selected.

-ExpandProperty string
 Select and expand the specified property.

-First int
 Select int number of objects from the beginning of an array of input objects.

-Last int
 Select int number of objects from the end of an array of input objects.

22

FOREACH
Similar to CMD FORFILES command, FOREACH executes a set of commands for each object within a
collection of objects. As FOREACH loops through each object, the object is temporarily stored in a variable
(i.e., item in collection).

In the following example, each object within the collection (i.e., sasfiles) is captured in the file variable and
the set of commands within the scriptblock (i.e., the commands within the curly braces) are executed on
each item (i.e., on each file)

ForEach ($file in $sasfiles) {
 ## COMMANDS TO BE EXECUTED
}

EXPAND-ARCHIVE
Prior to PowerShell 5.0, the ability to zip files was not part of the built-in set of cmdlets. Other alternatives
needed to be used. (Sheppard, New-Zipfile, Expand-Zipfile, n.d.).

In the snippet of code, we indicate we want to expand (or unzip) the file specified in the rcvdfile variable at
the location indicated by the rcvd variable. The extracted files from the zipped file are saved to the
__TEMP folder found at the location indicated by the pgmpath variable.

Expand-Archive $rcvd\$rcvdfile $PgmPath__TEMP

In order to determine if you can use EXPAND-ARCHIVE, $PSVersionTable cmdlet can be used (Display
12).

Display 12: Checking Version of PowerShell

FOREACH Syntax Description
Loops through a set of input
objects and performs an
operation on each object.

ForEach [-Parallel] (item In collection)
 {ScriptBlock }

-item A variable that holds the current item in the loop
-collection A collection of objects, such as filenames, registry keys or servernames
-ScriptBlock A block of script or operation to run against each object.

EXPAND-ARCHIVE Syntax Description
Extract files from a zipped
(archived) file

Expand-Archive [-Path] string
 [-DestinationPath]
 string [-force]
 [-Confirm] [-WhatIf]
 [CommonParameters]

-DestinationPath string []
 The path where the extracted files are to be saved.

-Path string []
 The path where the zipped (archived) file is saved.

23

Extra Tidbit: Quoting in PowerShell
Within PowerShell, you can use double or single quotes. Depending on how they are used could yield
different outcomes. When setting a variable, the use of single quotes treats the string as verbatim text, and
the value will be stored as is as seen with the return value of ‘$pgmpath\received’ in Display 13.

Display 13: Using Single Quotes when Creating a New Variable
However, if the purpose is to resolve the variable pgmpath when creating the new variable rcvd, then
double quotes are needed as demonstrated in Display 14.

Display 14: Using Double Quotes when Creating a New Variable
So, you may be asking if we need to use quotes when creating a new variable, how do we add quotes
around the new variable. If you need to add quotations around a variable there are several ways to do this
depending on whether you want single or double quotes. To add single quotes around the value, we need
to enclose the single-quoted string within double quotes (Display 15). Note that in order for the variable
rcvdfile to resolve the order in which we use single and double quotes is important. Notice in Display 16
that we enclosed the double-quoted string within single quotes, and this treated the value as verbatim text.

Display 15: Adding Single Quotes Around a Variable Value – Correct Way

Display 16: Adding Single Quotes Around a Variable Value – Incorrect Way
There are two ways to add double quotes around the value in the variable, the first way is to double the
double quotes around the double-quoted string. The second way is to use the PowerShell escape character
(`) to essentially mask the double quote. Refer to Display 17.

Display 17: Adding Double Quotes Around a Variable Value
For more details on quoting, visit Microsoft® documentation on PowerShell Scripting about_Quoting_Rules
(Microsoft, n.d.).

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules?view=powershell-7.3

24

SAMPLE USES
Now that we have gone over the basics for CMD and PowerShell, we can go through some use cases.

UNZIP FOLDERS
It is not uncommon to receive data via ZIP files. In order to use the data, we need to unpack the file. This is
easy enough to accomplish manually by right clicking on the file in Windows Explorer, selecting Extract All
from the right-click menu, and then indicating where to save the extracted files. However, you may want to
be selective about your data extraction. For example, you may have particular subfolders and file types that
you want to extract, leaving the remainder of the data in the zip untouched. Manual extraction via point and
click can be tedious and is prone to human error (e.g.., a data file could be overlooked). Harnessing the
power of either CMD or PowerShell can help ensure you extract the files you need and place them in the
desired location. Here we illustrate some steps on how to create a BAT or a PS1 script to unpack a ZIP file.
Note that the full code for both the UNZIP.BAT and UNZIP.PS1 can be found in Github.
(https://github.com/rwatson724/CMD-PowerShell-Scripts)

CMD
Our goal is to find a ZIP file with the current date in the file name and extract the data. If there is no ZIP file
with the current date in the file name, then we need to find the latest ZIP created and attempt to unpack that
file. For the purpose of this script, the assumption is that the date in the ZIP file name is one of the following
formats YYYY-MM-DD, YYYY_MM_DD or YYYYMMDD.

Using CMD to create a script to extract data from a ZIP file, we start with determining the current date and
setting the necessary environment variables (i.e., today, runday, rcvd). This was illustrated in the SET
section for CMD Commands and Examples. Once we have set the environment variables, we can begin
searching for the ZIP file.

When searching for the ZIP file with the current date, we search in the indicated folder, rcvd, for a ZIP file
that has the current date, __today. If a file is found, then the environment variable, rcvdfile, is set to the file
name and we then jump to the FoundFile location. Note because we want the file with the latest date, we
use /O:-D option and /B only returns the name.

set __today=%today%
for /F "delims=|" %%I in ('DIR "%rcvd%*%__today%*.zip" /B /O:-D') DO (
set rcvdfile=%%I
goto FoundFile
)

This process is repeated for each date pattern. If there is no ZIP file found with the current date, then the
file with the latest creation date in the rcvd folder is retrieved and it is saved in rcvdfile. Once the latest file
is found, instead of jumping to FoundFile, we need to jump to the FMTDate location because we need to
extract the last modified date of the file and format that date to desired format for the folder where the
extracted files are saved.

for /F "delims=|" %%I in ('DIR "%rcvd%*.zip" /A:-D /B /O:-D /T:C') DO (
set rcvdfile=%%I
goto FMTDate
)

25

In order to extract the date from the file name found, we use FORFILES to retrieve the date and write the
date to a temporary external file (__TEMPTEXT.TXT). The external file is then read back in so that the date
stored in the file can be retrieved and reformatted.

if defined __rcvdfile (
forfiles /P "%rcvd%" /M %__rcvdfile% /C "cmd /c echo @fdate" > __TEMPTEXT.TXT
for /F "tokens=1" %%A in (__TEMPTEXT.TXT) DO set fdate=%%A
)

After a ZIP file is found and the date for the folder name is determined (i.e., current date or latest modified
date), additional checks are done to see if there is already a folder with that date. If no dated folder with the
indicated date exists, then the script proceeds to create the date folder and writes a message to an external
file. If there is already a dated folder, then we jump to the location FolderExists and a message is written to
an external file and then we are directed to the location Done to exit.

if exist %fldr% goto :FolderExists
mkdir __TEMP
mkdir %today%
echo - %today% folder was created >> "%CD%\unzip_%runday%.txt"

REM: ADDITIONAL CMD STATEMENTS ARE HERE – NOT SHOWN

:FolderExists
echo - This folder %today% already exists within %CD% > "%CD%\unzip_%runday%.txt"
echo - Either confirm received file is already unzipped or delete the folder >>
"%CD%\unzip_%runday%.txt"
goto Done

If the folder does not exist and then after the folder is created, we move onto the step that extracts the
necessary data files from the ZIP files. The following code utilizes VBScript to unpack the ZIP file since it
does not depend on any additional ZIP software and it stores the contents in the __TEMP folder that was
previously created. Original VBScript is found on StackOverflow (Williamson, n.d.) and has been modified
to meet our needs.

:UnZipFile <ExtractTo> <newzipfile>
set vbs="%temp%_.vbs"
if exist %vbs% del /f /q %vbs%
(echo strExtractTo = WScript.Arguments.Item(0^)
 echo strNewZipFile = WScript.Arguments.Item(1^)
 echo WScript.echo strExtractTo, strNewZipFile
 echo set objFSO = CreateObject("Scripting.FileSystemObject"^)
 echo set objShell = CreateObject("Shell.Application"^)
 echo set FilesInZip = objShell.NameSpace(strNewZipFile^).items
 echo objShell.NameSpace(strExtractTo^).CopyHere(FilesInZip^)
 echo set objFSO = Nothing
 echo set objshell = Nothing
) > %vbs%

for %%A in ("%~2") do cscript //nologo //B "%vbs%" "%~1" "%%~A"
if exist "%vbs%" del /f /q "%vbs%"

After the ZIP file is unpacked, data files (e.g., SAS7BDAT files) are searched for in the __TEMP folder and
are moved to the dated folder. Once all the data files are moved, the __TEMP folder is deleted.

for /R "%CD%__TEMP\" %%A in (*.sas7bdat) do move "%%A" "%CD%\%today%\"

rmdir /s /q "%CD%__TEMP\"

26

PowerShell
Now we show how to achieve the same goal using PowerShell.

Using GET-DATE we determine the current date and save it to a variable. This was illustrated in the GET-
DATE section for PowerShell Commands and Examples. In addition, to the date we need to determine the
current location (note that the PS script should be saved in the location where you want to run it from) and
the location of where the zip files are stored and save these to variables as well (pgmpath and rcvd,
respectively). Once we have set the environment variables, we can begin searching for the ZIP file.

We search in the indicated folder, rcvd, for a ZIP file that has the current date. If a file is found, then the
variable, rcvdfile, is set to the file name and the variable, fdate, is set to the current date with hyphens
(e.g., today_hyp). Note that each format for the current date is checked and if rcvdfile is still missing after
all formats are checked, then the file with the latest creation date in the rcvd folder is retrieved and it is
saved in rcvdfile and the creation date for that file is saved in fdate.

$rcvdfile = $(get-childitem -path $rcvd -filter *$today_hyp*.zip)
ADDITIONAL POWERSHELL COMMANDS
if ($rcvdfile) { $fdate = $today_hyp }
else { $rcvdfile = gci -path $rcvd -filter *.zip | sort-object -property
creationtime | select -last 1 }
ADDITIONAL POWERSHELL COMMANDS
if (-not($fdate)) { $fdate = $(gci $rcvd\$rcvdfile | select -expandproperty
creationtime | get-date -f "yyyy-MM-dd") }

Once a file is found and a date for the folder is set, then we need to check to see if the folder already exists
and if it does not, then we need to create it. The creation of a new folder is illustrated in NEW-ITEM section
for PowerShell Commands and Examples.

After we determine if we can unzip the file (i.e., if the folder previously existed, it does not unzip the file), we
can use the EXPAND-ARCHIVE cmdlet to unpack the ZIP file (refer to EXPAND-ARCHIVE section for
PowerShell Commands and Examples for details). Recall that we only want data files (e.g., SAS7BDAT
files) so the EXPAND-ARCHIVE cmdlet extracts all the files in the ZIP file to a __TEMP folder. After the ZIP
file is unpacked, then data files are moved from __TEMP to the dated folder. Once all the data files are
moved, the __TEMP folder is deleted.

Expand-Archive $rcvd\$rcvdfile $PgmPath__TEMP
gci $PgmPath__TEMP -recurse -include *.sas7bdat | move-item -dest $uzdir
remove-item $PgmPath__TEMP -recurse -force

By default, running PowerShell scripts is disabled. In order to enable the capability to execute PowerShell
scripts, we need to execute the following command in the console and select ‘Y’ to confirm we want to run.
This allows us to run scripts saved on our device. (Hemedinger, 2011)

Set-ExecutionPolicy RemoteSigned

BATCH SUBMITS
Another common task is to run programs in batch so that they run on a clean SAS session and the logs and
lsts files are saved. This can be achieved via Windows Explorer by right clicking on the program and
selecting ‘Batch Submit’. Although this is a good approach, it can sometimes ‘muddy’ up your folders since
the log and lst files are saved to the same folder. What do we do if we want the log and lst files saved in a
different folder or what if we need to run a bunch of programs? We don’t want to have to manually move all
those log and lst files nor do we want to right click and select ‘Batch Submit’ for a bunch of programs. With
CMD and PowerShell, we can come up with a more efficient solution.

27

Single Files
There are several ways to run a single program in batch. We illustrate two techniques using CMD and one
using PowerShell.

CMD
To run a single program and save the log and lst files to the correct folder locations, we need to make sure
those folders exist. For this particular BAT file, it assumes that the folders for the log and lst files already
exist.

We can then use SET command in CMD to set an environment variable that points to the executable file for
SAS and the CONFIG file.

set sas="C:\Program Files\SASHome\SASFoundation\9.4\sas.exe" -CONFIG "C:\Program
Files\SASHome\SASFoundation\9.4\nls\en\sasv9.cfg"

We can then use the SET command to create environment variables that point to the folders where the logs
and lsts files are to be saved.

set plog=-log "%CD%\Logs\"
set plst=-print "%CD%\Lsts\"

Once we have those variables created, then we can use the SET command to create a pop-up window that
allows us to enter the name of the program (without the ‘.sas’ extension). Notice that in Display 18 we are
prompted to enter a program name. In the example the name of the program is ‘CATQ Function.sas’, we
can enter the program name without the extension. This program name is saved in the environment
variable.

set pgm=
set /p pgm="Name of Program to be Executed - must be a complete name: "

Display 18: Pop-up Window Prompting for Program Name

Now that we have that last piece of information, the BAT file will put it together to signal that a SAS session
is to be opened, the program is to be executed and the log and lst files are to be saved into the indicated
locations. The complete code can be found on GitHub (https://github.com/rwatson724/CMD-PowerShell-
Scripts).

%sas% -sysin "%CD%\%pgm%.sas" %plog% %plst%

But what if you don’t want to be prompted to type the program name, especially if you have programs with
long or hard to remember names. We can create a drag-and-drop batch file that will allow us to drag the
program and “drop it” onto the BAT file.

This drag-and-drop script is similar to the previous BAT file with some slight differences. With this revised
script, we no longer need to make sure the folders where the log and lst files are to be saved exist, logic
has been added to ensure that they do.

https://github.com/rwatson724/CMD-PowerShell-Scripts
https://github.com/rwatson724/CMD-PowerShell-Scripts

28

if exist "%~d1%~p1\Logs" (set LogFolder=%~d1%~p1\Logs) else (
 mkdir Logs
 set LogFolder=%~d1%~p1\Logs
)

In addition, instead of using a SET command to prompt for a program name, we use a FOR command to
allow us to send in the name of the file.

for %%A in (%*) do set pgm=%%~nA

The drag-and-drop BAT file allows us to select the program we want to execute and drag it on top of the
BAT file (Display 19). Once the file is dropped onto the BAT file, a SAS session is opened, the program is
executed and the log and lst files are saved to the appropriate location.

Display 19: Drag and Drop a SAS Program onto a BAT File

PowerShell
With PowerShell we are going to illustrate the drag-and-drop technique. However, this works a bit
differently than the CMD technique. In fact, the drag-and-drop technique in PowerShell needs to work in
tandem with CMD to achieve this. First, we describe the PowerShell script.

Within the PowerShell script, we need to define the necessary variables that will be used to execute the
program starting with the name of the file. The file is read in as a parameter that is dropped onto a BAT file.
Once the parameter is read into the PowerShell script the information, such as path (pgmpath) and
filename (pgmname), associated with that file is extracted. In order to retrieve the filename without the
extension, the BASENAME attribute is used.

$File = $args[0]
$PgmPath = (gl).path
$PgmName = (gi $File).basename

Once we have the necessary variables, we can check for the existence of the log and lst folders and if they
do not exist, then they are created and a new variable is set that has the name of the log file in the
appropriate folder (code is repeated for Lsts folder).

$logdir = "$PgmPath\Logs"
if (-Not (Test-Path $logdir.trim()))
{
 New-Item -Path $logdir -ItemType Directory
}
$LogPath = "$($logdir)\$PgmName.log"

Additional variables are set that point to the location of the SAS executable file and the SAS configuration
file.

$sasexe = "C:\Program Files\SASHome\SASFoundation\9.4\sas.exe"
$sascfg = "C:\Program Files\SASHome\SASFoundation\9.4\nls\en\sasv9.cfg"

29

With all these variables, we can now build our command that will allow us to execute the SAS program that
is dropped onto the BAT file.

Write-Host "EXECUTING PROGRAM: " $File
 & "$sasexe" "$File" -NOLOGO -RSASUSER -CONFIG "$sascfg" -LOG "$logpath" -PRINT
"$lstpath" | Out-Null

Now that we have our PowerShell script written, we want to be able to execute a SAS program with the
drag-and-drop technique. In order to achieve this, we need to utilize CLI. The script is pretty
straightforward. We indicate where the executable file for PowerShell resides, then we indicate the full
filename (including path and extension) of our PowerShell script. Note that this is preceded by the -FILE
option. Lastly, we need to indicate that the PowerShell file is going to be passed a parameter and this is
denoted with %*.

%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe -file
"C:\Users\gonza\Desktop\Conferences\Drafts\Commando\PowerShell_Drag_and_Drop.ps1"
%*

Since this is a BAT file, the drag-and-drop technique works the same way it does as described in the CMD
section above. The difference is that it is now going to execute a PowerShell script. For this particular
script, a pause is included in the BAT file to show what is being executed by writing a message to the
console (Display 20).

Display 20: PowerShell Drag-and-Drop Technique

Right-Click Menu Item
But wait, there’s more! What if we still want the right-click functionality but we need the log and lst files to
go to the appropriate location and not be saved in the same folder as the program?

In order to do so, we need to update the registry. The following code should be saved as a ‘.reg’ file (e.g.,
“Create-SAS Single Batch.reg”). (Schmidt, n.d.)

Windows Registry Editor Version 5.00

[HKEY_CLASSES_ROOT*\shell\SAS Single Batch\command]

@="\"C:\\Users\\gonza\\Desktop\\Conferences\\Drafts\\Commando\\SAS Single Batch
DnD.bat\" \"%L\""

Note that “SAS Single Batch.bat” is the same script as “drag_and_drop_batch.bat”

To create the PowerShell drag-and-drop right-click menu item, we save the following as a ‘.reg’ file (e.g.,
“Create-PowerShell DnD.reg”). (KyleMit, n.d.)

30

Windows Registry Editor Version 5.00

[HKEY_CLASSES_ROOT*\shell\PowerShell DnD\command]

@="C:\\\\Windows\\\\system32\\\\WindowsPowerShell\\\\v1.0\\\\powershell.exe -
File
\"C:\\Users\\gonza\\Desktop\\Conferences\\Drafts\\Commando\\PowerShell_Drag_and_
Drop.ps1\" \"%L\""

Once we have saved the reg files, we can double click on them to add them to the registry. Note you can
only do this if you have the correct permissions and even then, you will get a message indicating that
adding, changing or deleting can cause components to stop working correctly (Display 21).

Display 21: Registry Editor Warning

Once the commands are added in the registry you will be able to see them in the Registry Editor (Display
22).

Display 22: Registry Editor with the Two New Right-Click Menu Items

Now when we right click on a SAS program, we have the options to either run via “PowerShell DnD” or “SAS
Single Batch” (Display 23) and this way our logs and lsts files get written to the desired location versus writing to
the location where the SAS program resides.

31

Display 23: New Right-Click Menu Items

Multiple Files
We have shown you how to execute a SAS program in batch using CMD and PowerShell and how to add a
right-click menu option. While this is nice during the development phase of a program, it may not be ideal
during production phase, when all the programs need to be executed. Now we turn our attention towards
writing a script that will allow us to run all programs.

CMD – Manual Entry of Programs
Similar to the drag-and-drop technique, we check to see if the folders where the log and lst files are to be
saved exists, and if they do not, we create them. We then set the environment variables, plog and plst. We
also create the environment variables for the SAS executable file and SAS configuration file.

We then create a command to open SAS and execute the indicated program and write the log and lst file to
the specified locations for every program that we want to run in batch.

%sas% -sysin "%CD%\ANYNOT Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\CALL SORTC Routine.sas" %plog% %plst%
%sas% -sysin "%CD%\CATQ Function.sas" %plog% %plst%
%sas% -sysin "%CD%\COALESCE Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\COMPRESS Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\COUNT Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\DATE and TIME Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\FIND Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\FIRST, REVERSE Functions and PROC FCMP.sas" %plog% %plst%
%sas% -sysin "%CD%\INDEX Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\MISSING Routine and Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\PATHNAME Function.sas" %plog% %plst%
%sas% -sysin "%CD%\PRX Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\RESOLVE Function.sas" %plog% %plst%
%sas% -sysin "%CD%\SCAN Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\TRANSLATE Functions.sas" %plog% %plst%
%sas% -sysin "%CD%\V Functions.sas" %plog% %plst%

32

The downside to this approach is that it is easy to mistype a program name and if a program is not found
then you get an error message as shown in Display 24. In addition, you need to type all the program names
in and only the ones included are executed.

Display 24: ERROR Message Produced When Program Cannot be Found

CMD – Automatic Entry of Programs
For the automatic approach of calling SAS programs to execute, everything is the same up to the point of
where we specify the individual commands. Instead of the individual commands, we can use a FOR loop to
loop through the current directory looking for SAS files and if they exist, then we execute the command to
run the program for that file.

for %%I in (DIR "%CD%*.sas" /B) DO (
if exist %%I (%sas% -sysin "%%I" %plog% %plst%)
)

The advantage of this approach is that we don’t have to worry about typing all the program names and
making sure they are typed correctly. The disadvantage is that this will run ALL SAS programs in the
current directory, so if there is an extraneous SAS program that is not to be executed, it either needs to be
removed or additional logic needs to be added to the script so that it is skipped. Another disadvantage is
that the programs may not be executed in the correct order.

PowerShell
The multi-batch version is similar to the single batch version in that it makes sure it has the appropriate
folders for the log and list files and has the necessary variables for the SAS executable program and
configuration file, but that is about it. Instead of having an argument passed via a CMD parameter to
determine the SAS program name, we use a FOREACH loop to loop through the indicated path specified in
sasfiles looking for files with ‘.sas’ extensions. If the condition is met, then the commands are executed.

$sasfiles = $(Get-ChildItem -Path $PgmPath -Filter *.sas)
ForEach ($file in $sasfiles) {
 $saspgm = $File.basename
 $saspgmex = $File.Name
 $LogPath = "$($logdir)\$saspgm.log"
 $LstPath = "$($lstdir)\$saspgm.lst"
 Write-Host "EXECUTING PROGRAM: " $File
 $sasProgram = "$PgmPath\$saspgmex"
 & "$sasexe" "$sasProgram" -NOLOGO -RSASUSER -CONFIG "$sascfg" -LOG "$logpath"
-PRINT "$lstpath" | Out-Null
}

33

UTILIZING THE COMMAND(O) LINE WITHIN SAS
The fantastic material above describes how you can automate what would have been tedious manual steps
in Windows with the clever use of CMD and PowerShell scripts. The ability to use command line scripts
without accessing pay to play software is a valuable addition to our programming toolbox, and, non-
programming staff can run these scripts. This section of the paper will provide three different similar
solutions using CMD inside of SAS: creating an Excel and SAS directory listing using CMD in an unnamed
pipe; writing and submitting a batch file with CMD and the X command; and zipping and unzipping within
SAS using the X command and the WinZip CLI.

DIRECTORY LISTING VIA PIPE IN SAS
First, let’s take a look at what the functionality we want looks like in PowerShell and CMD. In order to get a
complete project listing we need details of all files in all folders and subfolders. This is the type of
functionality that CLIs were built for. Both PowerShell and CMD (and other UNIX/LINUX/etc. shells) provide
directory listings and a slew of subcommands, with similar, but not identical, syntax and functionality. It is
advisable to consult documentation for each of these shells to find the correct syntax for the function you
want to perform.

PowerShell Directory Listing
In Windows Server, PowerShell can be located in the Program Files folder under Windows PowerShell, as
shown in Display 25. As noted in section The Basics: PowerShell, you can search for PowerShell in the
Windows Search menu item.

Display 25: Screenshot Showing the Location of Windows PowerShell
Windows PowerShell places the user in their Windows Users directory upon opening. You need to navigate
to the drive and directory you want to obtain a listing for. This can be accomplished manually from the
PowerShell prompt, or via the X or pipe commands in SAS. Some companies ban the use of PowerShell
from other software packages: the second author’s company is no exception. Manual use is permitted and
demonstrated in Display 26, using a small directory with subdirectories.

Display 26: Navigating to a Directory and Obtaining a Full Directory Listing in PowerShell

34

The CD command is a short version of “change directory” – in PowerShell you can move from drive to drive
and to a subdirectory in one step. It is shown as two steps here, moving from c:\users\haddenl Ito the g:
drive top level, then to a subdirectory scabs. Once we are in scabs, we issue a directory command (DIR)
with a -S modifier (indicating we want the listing to include all subdirectories below the scabs directory.

Below, we see the directory listing resulting from the commands. Since the second author’s company does
not allow access to PowerShell directly from SAS, the author turns to the use of CMD instead to perform
this within SAS.

Display 27: Screenshot of a Full Directory Listing in PowerShell

CMD Directory Listing
From Windows Server, we search for the system command shells available. Windows makes it somewhat
difficult to locate the Command Prompt from anything other than the search command shown in Screenshot
1 and Screenshot 5. Once you find the Command Prompt (note that since Anaconda ALSO has a command
shell available on our system, it pops up in the search) it is recommended that you pin the Command
Prompt to the Start Menu and/or Task Bar for continued use.

Screenshot 5: Screenshot of Results of the Search Command in Windows Server

35

Once we have located the command prompt for CMD, we repeat the same process shown above for
PowerShell, changing drives, navigating to the scabs subfolder, and creating a directory listing shown on
the screen. Note that there are subtle but important differences between CMD and PowerShell. The first is
that in CMD, you MUST change drives in a separate step, and the second is that instead of -S, /S is used.
Please also note that case matters for some operating systems (Unix, Linux - /s may not be the same as /S.
Your shell of choice will have a “HELP” feature (in Unix/Linux it is often “man”) – when in doubt, consult the
documentation. For Windows platforms, typing HELP DIR will give you a quick digest of the syntax and
subcommands for the DIR command.

Display 28: Screenshot of Results of the Help Dir Command in Windows Server

Additionally, the results of a directory listing using PowerShell vs. CMD are different as seen in Display 27
and Display 29.

36

Display 29: Screenshot of Results of the Search Command in Windows Server
The directory listing shown in Display 29 has the information we want, but it is on the screen, not in a file.
CLIs provide the ability to redirect the results of a command to a text file. To redirect the results, we use the
> symbol to create a text file from the DIR /S command. We confirm the creation of the text file by using the
TYPE command. In Display 30, we show that the results of the DIR /S command are written to a file named
“scabsdirlist.txt”. The text file can be processed manually to create a report, but there’s a better way.

Display 30: Screenshot of Redirecting the Results of the Search Command to a Text File in Windows
Server

37

Creating SAS and Excel Output from a CMD Directory Listing in SAS
We have succeeded in creating a listing of files with CMD. Now the challenge is to replicate this process
within SAS, in order to avoid typing, clicking, copying, and pasting. Additionally, we want to create both a
SAS and Excel file from our directory listing, and create additional helpful variables in the process.

There are a number of ways to access system commands from within SAS. Two more commonly used
methods are the X command and FILENAME and PIPE. This particular sample utilizes the FILENAME and
PIPE method. All code samples provided below are snippets of larger programs, which are available in their
entirety in the paper’s GitHub page, https://github.com/rwatson724/CMD-PowerShell-Scripts. Previously, we
demonstrated how to accomplish and redirect a directory listing with subdirectories in both Windows
PowerShell and CMD. The FILENAME and PIPE commands allow us to redirect the results of a CLI
command into a holding tank (pipe) that is accessible to SAS via a FILENAME statement.

libname dd '.';
filename yy '.\revisedcommando.txt';
filename dirlist pipe "dir ""&loc."" /s";
run;

The piped in text is edited in place to clean the input and prepare it for further manipulation in SAS with
another FILENAME statement in program READDIRLIST2.sas (available in the paper’s GitHub page,
https://github.com/rwatson724/CMD-PowerShell-Scripts). As seen previously, the PowerShell and CMD
outputs from a directory listing are not “fixed” record format; instead, records can present with multiple
formats. The preprocessing categorizes the records into three primary types (main directory, sub directory,
and filename) so they can be ingested appropriately and deletes empty and unnecessary records.

data temp1000 ;
 infile dirlist lrecl=1000 missover pad;
 input foo1 $char1000.;
 if foo1='' then delete;
 foo1=left(foo1);
 if index(foo1,'bytes')>0 then delete;

 seqnum=put(_n_,z8.);
 retain sumflag 0;
 dirflag=(substr(foo1,1,9)='Directory');
 if substr(foo1,25,5)='<DIR>' then rectype='sdirname';
 if substr(foo1,40,1)='.' then delete;
 if substr(foo1,38,1) ne ' ' then rectype='filename';
 if substr(foo1,1,9)='Directory' and substr(foo1,25,5) ne '<DIR>'
 then rectype='mdirname';
 sumflag=sumflag+dirflag;

run;

data temp2;
 file yy lrecl=300 pad;
 set temp1000;
 put rectype dirflag seqnum foo1;
run;

data temp3;
 length cdate $ 10 time $ 6 ampm $ 2 csize $ 13 name directory $ 240
 part2 $ 20 filetype sizefmtd $ 32;
 infile yy lrecl=300 missover pad firstobs=2;
 input rectype $ 1-8
 @;

 if rectype='filename' then input
 cdate $ 21-30
 time $ 33-37
 ampm $ 39-40

38

 csize $ 45-58
 name $ 60-300
 ;
 if rectype='sdirname' then input
 cdate $ 21-30
 time $ 33-37
 ampm $ 39-40
 name $ 60-300
 ;
 if rectype='mdirname' then input
 name $ 34-275;

Variables created during processing include DIRECTORY (full path), FILENAME, SIZE, DATE, TIME,
RECTYPEFILETYPE, and ORIGINAL_ORDER (to facilitate resorting of the data). The resulting file is
exported to Excel (Screenshot 6) and saved as a permanent SAS data set (Screenshot 7).

Screenshot 6: Screenshot of Reading in the Results of CMD Directory Listing – Excel

39

Screenshot 7: Screenshot of Reading in the Results of CMD Directory Listing – SAS Data Set
The resulting SAS data set and Excel file can be manipulated for various purposes. The second author’s
company uses this program for data management and documentation.

ZIPPING AND UNZIPPING VIA X COMMAND IN SAS
For this example, we chose to use the X command as opposed to a FILENAME and PIPE and batch file
solution. Below is a simple sample of usage of the X command which copies all files with the XLSX
extension from S:\DATA to G:\DATA.

X "copy s:\data*.xlsx g:\data*.xlsx";;

Zipping and unzipping within a SAS program is required for a large and complex project with monthly
deliveries of multiple files, some of the files are very large, via Secure File Transfer Protocol (SFTP).
Additionally, this process is used for regular archiving on the project. This example creates zipped
deliverables in a specific domain on a Windows x64 cloud server, via the X command and the WinZip CLI.
Other zip packages with CLIs such as 7zip can also be employed and have been successfully tested with
this process (with appropriate syntax changes).

The first steps in operationalizing the zipping process were to consult the documentation for the WinZip CLI.
Two basic commands in the WinZip CLI, WZZIP and WZUNZIP are used. You use WZZIP to create the zip
file. Then, in order to obtain a listing of what is contained in the zip file you created, you need to temporarily
unzip the file using WZUNZIP and redirecting the listing to an external file.

40

Screenshot 8: Screenshot of the WinZip CLI documentation
Next, just as we did for CMD and Windows PowerShell, we need to determine the location of the
executables for WZZIP and WZUNZIP. If available, these executable files are typically located in a
subfolder within in the c:\Program Files directory as seen in Display 31.

Display 31: Location of WinZip Executables
Using multiple X commands, we zip up our files, write a text file with a listing of the files in the zip file, read
the text file in, and print the results for verification purposes. We are able to zip up exactly the files that we
want with WinZip commands. Wildcards are allowed. Note that the “double double” quotes are required on
our system as there are spaces in the pathnames. Note also the use of single period(“.”) and double periods
(“..”) – this allows us to walk through a directory tree and navigate to the desired folders programmatically.
This functionality can only be used when running in batch mode or through a batch program: interactive
SAS platforms such as Enterprise Guide, SAS Studio, and the Display Manager require full pathnames
and/or macro variables.

First, files are zipped using the X command to access the WinZip CLI’s WZZIP executable. Note that all file
pathnames are shortened for legibility.

41

* Zip up the files ;
X " ""c:\program files\WinZip\wzzip""
 -a ""..\Helpline_&fileyear.&filedate._allfiles.zip""
 "".\NHC_5star.xlsx""
 "".\Helpline_db_contents.rtf""
 "".\allfaclevel.sas7bdat""
 "".\allfaclevel_contents.rtf""
 "".\HICutpoints_State.rtf"" ";
. . .

Second, a file listing is created by using the X command to access the WinZip CLI’s WZUNZIP executable.
The zip file just created is accessed again using -@ to create an external text file containing the contents of
the zip file.

* write a text file with listing of files in zip;
X " ""c:\program files\WinZip\wzunzip""

-@"".\Helpline_allfiles_listing.txt""
 "".\Helpline_&fileyear.&filedate._allfiles.zip"" ";

run;
. . .

Lastly, the file listing is read into SAS and used to compare with the number and names of files meant to be
included in the zip file to verify the zipping process.

Display 32: Verification of Zipping Process

CREATING AND RUNNING A BATCH SAS FILE VIA X COMMAND IN SAS
We saw previously how to operationalize a very slick batch process outside of SAS. Now, we are going to
turn to creating a batch file and deploying it within a SAS file, via SAS data steps and the X command. For a
very large and complex project, we are responsible for creating XML output files. Given the size of the input
data, these 10 programs run for more than a day. To reduce the burden on a shared server, we need to run
these programs from the command line, avoiding clogging up the Windows server. Note that as we saw
previously in the CMD / PowerShell versions, we are able to add different “command line” parameters to the
rows in the batch file – in this case we are setting the memory allocation to max. In order to make the
program snippet legible the actual program path has been set to &loc. Note that the following SAS code
creates the BAT file with the appropriate command with the necessary options to execute each program,
and at the end it executes the BAT file via the X command. The contents of the BAT file can be viewed in
Display 33.

42

/*~ Make Batch File ~*/
filename bat 'run_xml_pgm.bat';
run;
data _null_;
 file bat;
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\4XMLMapping_group1.sas"" -memsize max";
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\5XMLMapping_group2.sas"" -memsize max";
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\6XMLMapping_group3.sas"" -memsize max";
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\7XMLMapping_group4.sas"" -memsize max";
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\8XMLMapping_group5.sas"" -memsize max";
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\9XMLMapping_group6.sas"" -memsize max";
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\10XMLMapping_group7.sas"" -memsize max";
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\11XMLMapping_group8.sas"" -memsize max";
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\12XMLMapping_group9.sas"" -memsize max";
 put """c:\Program Files\SASHome\SASFoundation\9.4\Sas.exe""
""&loc.\13XMLMapping_group10.sas"" -memsize max";
run;

/*~ Run Batch File ~*/

x 'run_xml_pgm.bat';

Display 33: Batch File Written and Deployed Within SAS

CREATING AND RUNNING A COMMAND LINE BATCH FILE VIA DATA _NULL_ AND
FILENAME PIPE IN SAS
We have demonstrated two methods of using SAS to utilize command line processing. There are additional
methods, such as %SYSTASK, but exploring all possible methods is beyond the scope of this paper and
presentation. In this example, we explore using a filename pipe within a DATA _NULL_ step to deploy batch
commands in CMD. This routine has great potential for looping through a file programmatically, submitting

43

batch commands on the fly, without the need for “double double” quotes. The program snippet below
creates a variable that contains a command or expression (the same one used in the directory listing
example in this case), then assigns that command to a pipe device with the FILEVAR option. The command
executes until EOF, leaving the option to have multiple records to execute multiple commands. The output
of the command is echoed to the log with the put _INFILE_ statement and can be seen in Display 34,
comingled with the lst via PROC PRINTTO. If it looks familiar, it is indeed the same output as yielded by the
directory listing example.

proc printto log="batchpipetest.txt" print="batchpipetest.txt" new;
data _null_;
 f = 'dir "G:/SCABS"/s';
 infile ff PIPE FILEVAR=f end=EOF;
 do until(eof);
 input;
 put _infile_;
 end;
 stop;
run;

proc printto;
run;

Display 34: Batch File Within SAS via FILENAME PIPE and Data _null_

CONCLUSION
The Windows Command Line Interface (CLI / CMD) and PowerShell operating systems can greatly
enhance and improve utility of various operations, including custom scripts to zip and unzip files both with
and without the use of an external zip application, create Excel and SAS directory listings, and create and
submit batch SAS scripts. We hope you will explore the valuable tips we have demonstrated, and make the
command line a part of your programming toolbox and put a little “power” into your code.

Full code for examples shown is available on GitHub: https://github.com/rwatson724/CMD-PowerShell-Scripts.
Please feel free to contact us with any questions you may have or for further information.

https://github.com/rwatson724/CMD-PowerShell-Scripts

44

Disclaimer: Not all companies allow their employees to access command line interfaces of any kind or the
registry. You may need to work with your IT department to permit curated access to these tools or develop
the script or right-click menu item. For example, the second author’s company allows for the registration of
named executables that allows the use of batch files.

REFERENCES
Computer Hope. (n.d.). Command line. Retrieved Nov 2022, from Computer Hope:

https://www.computerhope.com/jargon/c/commandi.htm
Computer Hope. (n.d.). Command-line interpreter. Retrieved Nov 2022, from Computer Hope:

https://www.computerhope.com/jargon/c/comminte.htm

Hadden, L. (2012). Put a Little Zip in Your SAS® Program. Orlando, FL: SAS Global Forum. Retrieved from
https://support.sas.com/resources/papers/proceedings12/214-2012.pdf

Hadden, L. (2017). Get Smart! Eliminate Kaos and Stay in Control – Creating a Complex Directory Structure with the
DLCREATEDIR Statement, SAS® Macro Language, and Control Tables. Long Beach, CA: WUSS. Retrieved
from https://www.lexjansen.com/wuss/2017/43_Final_Paper_PDF.pdf

Hemedinger, C. (2011, Sep 12). Running Windows PowerShell Scripts. Retrieved Nov 2022, from SAS Blogs:
https://blogs.sas.com/content/sasdummy/2011/09/12/running-windows-powershell-scripts/

How to Add New Options to Right Click Menu in Windows. (n.d.). Retrieved Feb 2023, from wikiHow:
https://www.wikihow.com/Add-New-Options-to-Right-Click-Menu-in-Windows

KyleMit. (n.d.). Execute Powershell Script on Right Click in Windows Explorer. Retrieved Feb 2023, from GitHub Gist:
https://gist.github.com/KyleMit/978086ae267ff5be17811e99c9607986

Microsoft. (n.d.). about_Quoting_Rules. Retrieved Jan 2023, from Microsoft Technical Documentation:
https://learn.microsoft.com/en-
us/powershell/module/microsoft.powershell.core/about/about_quoting_rules?view=powershell-7.3

Microsoft. (n.d.). Command-line reference A-Z. Retrieved Jan 2023, from Microsoft Technical Documentation:
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490890(v=technet.10)

Microsoft. (n.d.). Starting Windows PowerShell. Retrieved Feb 2023, from Microsoft Technical Documentation:
https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/starting-windows-
powershell?view=powershell-7.3

Microsoft. (n.d.). What is PowerShell? Retrieved Feb 2023, from Microsoft Technical Documentation:
https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.3

Schmidt, R. (n.d.). Windows: How to add batch-script action to Right Click menu. Retrieved Nov 2022, from
StackExchange: https://superuser.com/questions/444726/windows-how-to-add-batch-script-action-to-right-
click-menu

Sheppard, S. (n.d.). An A-Z Index of Windows CMD commands. Retrieved Jan 2023, from SS64.com:
https://ss64.com/nt/

Sheppard, S. (n.d.). An A-Z Index of Windows PowerShell commands. Retrieved Feb 2023, from SS64.com:
https://ss64.com/ps/

Sheppard, S. (n.d.). How-to: Pass Command Line arguments (Parameters) to a Windows batch file. Retrieved Jan
2023, from SS64.com: https://ss64.com/nt/syntax-args.html

Sheppard, S. (n.d.). How-to: Some basic PowerShell principles - Objects, Methods and Properties. Retrieved Feb 2023,
from SS64.com: https://ss64.com/ps/syntax-objects.html

Sheppard, S. (n.d.). How-to: Standard DateTime Format patterns for PowerShell:. Retrieved Jan 2023, from SS64.com:
https://ss64.com/ps/syntax-dateformats.html

Sheppard, S. (n.d.). How-to: Variables and Operators (add, subtract, divide...). Retrieved Feb 2023, from SS64.com:
https://ss64.com/ps/syntax-variables.html

Sheppard, S. (n.d.). How-to: Windows Environment Variables. Retrieved Jan 2023, from SS64.com:
https://ss64.com/nt/syntax-variables.html

Sheppard, S. (n.d.). New-Zipfile, Expand-Zipfile. Retrieved Feb 2023, from SS64.com: https://ss64.com/ps/zip.html

45

SS64. (2022). Retrieved Nov 2022, from SS64: https://ss64.com/

Williamson, M. (n.d.). creating batch script to unzip a file without additional zip tools. Retrieved Oct 2022, from Stack
Overflow: https://stackoverflow.com/questions/21704041/creating-batch-script-to-unzip-a-file-without-
additional-zip-tools

ACKNOWLEDGEMENTS
We owe a debt of gratitude to the helpful compatriots on the SAS-L listserv; in particular, Bart Jablonski and
his encyclopedic knowledge of SAS.

RECOMMENDED READING
• Base SAS® Procedures Guide

• SAS® For Dummies®

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Richann Jean Watson
DataRich Consulting
richann.watson@datarichconsulting.com

Louise S. Hadden
Independent Consultant
saslouisehadden@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Any brand and product names are trademarks of their respective companies.

mailto:richann.watson@datarichconsulting.com
mailto:saslouisehadden@gmail.com

	Abstract
	Introduction
	The Basics
	Command-Line Interpreter (CLI) Prompt
	Command Prompt (CMD)
	CMD Basics - Variables Versus Parameters
	CMD Commands and Examples
	SET
	DIR
	MKDIR (MD)
	RMDIR (RD)
	DEL
	MOVE
	ECHO
	GOTO
	CALL
	IF/IF-ELSE
	FOR
	FORFILES
	EXIT

	PowerShell
	PowerShell
	PowerShell Commands and Examples
	NEW-VARIABLE
	GET-DATE
	GET-VARIABLE and WRITE-HOST
	GET-LOCATION
	GET-CHILDITEM
	NEW-ITEM
	REMOVE-ITEM
	MOVE-ITEM
	WRITE-OUTPUT
	OUT-FILE
	TEST-PATH
	IF/IF-ELSEIF-ELSE
	SORT-OBJECT
	SELECT-OBJECT
	FOREACH
	EXPAND-ARCHIVE
	Extra Tidbit: Quoting in PowerShell

	Sample Uses
	Unzip Folders
	CMD
	PowerShell

	Batch Submits
	Single Files
	CMD
	PowerShell
	Right-Click Menu Item

	Multiple Files
	CMD – Manual Entry of Programs
	CMD – Automatic Entry of Programs
	PowerShell

	Utilizing the Command(o) Line Within SAS
	Directory Listing via pipe in sas
	PowerShell Directory Listing
	CMD Directory Listing
	Creating SAS and Excel Output from a CMD Directory Listing in SAS

	Zipping and Unzipping Via X Command in SAS
	Creating and Running a Batch SAS File Via X Command in SAS
	Creating and Running a Command Line Batch File Via DATA _NULL_ and FILENAME PIPE in SAS

	Conclusion
	References
	Acknowledgements
	Recommended Reading
	Contact Information

