
Copyright © SAS Institute Inc. All r ights reserved.

Richann Watson is an independent statistical programmer and CDISC
consultant based in Ohio who loves to code and is very active in the SAS User
Group community. When Richann is not busy coding or volunteering in the SAS
User Group community, she is spending time with her family and cute but
psycho puppy, Loki, or doing some of her favorite crafts such as crocheting or
sewing.

Josh Horstman is an independent statistical programming consultant and
trainer based in Indianapolis with 25 years of experience using SAS, primarily in
the life sciences industry. Josh is a SAS Certified Advanced Programmer who
loves coding and presenting at PharmaSUG and other industry conferences.
Josh also enjoys travelling and hiking with his family and has been to 47 states
and 28 national parks.

From Muggles to Macros
Transfiguring Your SAS® Programs With
Dynamic, Data-Driven Wizardry

Copyright © SAS Institute Inc. All r ights reserved.

Introduction

• Static “muggle” code is full of hardcodes and data dependencies

- Not flexible: Breaks easily when unexpected inputs or conditions are present

- Difficult to maintain: Modifications needed when data or environment changes

- Difficult to reuse: Modifications needed to use for another project

- Macro Language “magic” can eliminate these problems!

- Dynamic: Code automatically adapts to changing inputs and conditions

- Data-Driven: Programming logic is controlled by the data and requires little maintenance

- Reusable: Code can easily be used in a variety of situations with little to no modification

Copyright © SAS Institute Inc. All r ights reserved.

Overview

1 Macro Language Review
The Basic Spellbook

4

3

2 Applying Macro Magic to
Data Values
Spell #1

Applying Macro Magic to
Metadata
Spell #2

Applying Macro Magic to
Environmental Data
Spell #3

Copyright © SAS Institute Inc. All r ights reserved.

Macro Language Review

The Basic Spellbook

Copyright © SAS Institute Inc. All r ights reserved.

Macro Processing: A Simplified Overview

• When a SAS program is submitted:

– Word scanner parses statements into tokens.

– Tokens are sent to compiler for syntax checking.

– Execution occurs when step boundary is reached.

• If the word scanner detects macro triggers (% or &):

– Macro elements routed to macro processor.

– Macro variables resolved and macro statements executed.

– Output from macro processor must be rescanned for additional macro language elements.

Copyright © SAS Institute Inc. All r ights reserved.

Macro Processing: A Visual Guide

Diagram from Carpenter’s Complete
Guide to the SAS® Macro Language,
3rd Edition. Used with permission.

SAS program

code submitted

for execution

Macro

statements

executed

Macro

references

resolved

Contains

macro references

(& or %)?

Macro Facility

invoked

Step is compiled

or parsed
Step is executed

YES

NO

Copyright © SAS Institute Inc. All r ights reserved.

Creating Macro Variables using %LET

• Assigning a value to a macro variable:

%let output_path = C:\temp;

• Subsequent references to macro variable replaced with value by macro
processor:

filename myfile "&output_path\myfile.txt";

• becomes

filename myfile "C:\temp\myfile.txt";

Copyright © SAS Institute Inc. All r ights reserved.

Limitations of %LET

▪ Macro processor assigns value before SAS code executes.

data _null_;
 set sashelp.class;
 where name='Alfred';
 %let alfred_age = age;
run;

▪ Macro variable alfred_age is literally assigned the value "age".

▪ SAS compiler only sees this:

data _null_;
 set sashelp.class;
 where name='Alfred';
run;

This %LET statement will
not have the desired effect.

Copyright © SAS Institute Inc. All r ights reserved.

Creating Macro Variables at
Execution Time using the SQL Procedure
▪ INTO clause assigns macro variable values during PROC SQL:

proc sql noprint;

 select age

 into :alfred_age

 from sashelp.class

 where name='Alfred';

quit;

▪ Macro variable alfred_age will be assigned the value "14".

Macro variable name

Value to be assigned

Copyright © SAS Institute Inc. All r ights reserved.

Macro Processing: Timing is Everything!

Diagram from Carpenter’s Complete
Guide to the SAS® Macro Language,
3rd Edition. Used with permission.

%LET executes here

DATA Step /
PROC SQL

executes here

SAS program

code submitted

for execution

Macro

statements

executed

Macro

references

resolved

Contains

macro references

(& or %)?

Macro Facility

invoked

Step is compiled

or parsed
Step is executed

YES

NO

Copyright © SAS Institute Inc. All r ights reserved.

Applying Macro Magic
to Data Values

Spell #1

Copyright © SAS Institute Inc. All r ights reserved.

Incantation #1: The Macro Variable List

• Macro Variable List – a series of macro variables, each storing one value

• Named with a common prefix and sequential suffix to enable processing in a
loop

• Example: A macro variable list containing the unique values of the ORIGIN
variable from the SASHELP.CARS data set

%let origin1 = Asia;
%let origin2 = Europe;
%let origin3 = USA;

• But we want to create these dynamically, not by hard-coding!

• Must be created at execution time to have access to data values.

Copyright © SAS Institute Inc. All r ights reserved.

Creating a Macro Variable List using PROC SQL

proc sql noprint;

 select distinct origin

 into :origin1-

 from sashelp.cars

 order by origin;

 %let numorigins = &sqlobs;

quit;

Get only unique values of ORIGIN.

The dash creates a series of
sequential macro variables, one for
each value returned by the query.

No need for an upper bound.

Create one more macro
variable so we know how
many items are in our list.

Copyright © SAS Institute Inc. All r ights reserved.

Using Macro Variable Lists

▪ Access individual list elements using macro variable reference:

&origin1 → Resolves to: Asia
&origin2 → Resolves to: Europe
&origin3 → Resolves to: USA

▪ Cannot use &origin&i

▪Macro processor interprets this as two macro variable references:

▪Macro variable origin does not exist.

Part 1

Copyright © SAS Institute Inc. All r ights reserved.

Using Macro Variable Lists

▪ Instead, use &&origin&i.

▪ Use in a loop:

%do i = 1 %to &numorigins;

 %put Item &i: &&origin&i;

%end;

Original: &&origin&i

1st pass: &origin1 (&& resolves to &, origin is just text, &i resolves to 1)
2nd pass: Asia (resolved value of macro variable origin1)

Part 2

Item 1: Asia

Item 2: Europe

Item 3: USA

Copyright © SAS Institute Inc. All r ights reserved.

Example #1: Dynamic Report Creation

• Goal: Create a separate plot in a separate PDF output file for each unique
value of STOCK in the SASHELP.STOCKS data set.

• Muggle approach: Code a separate call to PROC SGPLOT for each unique
value of STOCK

• Macro Wizard approach: Use a macro variable list to dynamically generate
the calls to PROC SGPLOT.

Copyright © SAS Institute Inc. All r ights reserved.

Example #1: Dynamic Report Creation

ods pdf file="IBM.pdf";

 proc sgplot data=sashelp.stocks;

 where stock = "IBM";

 highlow x=date high=high low=low;

 run;

ods pdf close;

Muggle Code

ods pdf file="Intel.pdf";

 proc sgplot data=sashelp.stocks;

 where stock = "Intel";

 highlow x=date high=high low=low;

 run;

ods pdf close;
ods pdf file="Microsoft.pdf";

 proc sgplot data=sashelp.stocks;

 where stock = "Microsoft";

 highlow x=date high=high low=low;

 run;

ods pdf close;

This code must be
repeated for each unique

value of STOCK.

Copyright © SAS Institute Inc. All r ights reserved.

Example #1: Dynamic Report Creation

%macro graph_stocks;

 proc sql noprint;

 select distinct stock

 into :stock1-

 from sashelp.stocks;

 %let numstocks = &sqlobs;

 quit;

Macro Wizard Code – Part 1 of 2

Use PROC SQL to place the
unique values of STOCK in a

macro variable list.

Copyright © SAS Institute Inc. All r ights reserved.

Example #1: Dynamic Report Creation

%do i = 1 %to &numstocks;

 ods pdf file="&&stock&i...pdf";

 proc sgplot data=sashelp.stocks;

 where stock = "&&stock&i";

 highlow x=date high=high low=low;

 run;

 ods pdf close;

 %end;

%mend graph_stocks;

%graph_stocks

Macro Wizard Code – Part 2 of 2

Each iteration
of the %DO

loop generates
the code to plot

one stock.

&&stock&i...pdf



&stock1..pdf



IBM.pdf

Two-pass
macro variable

resolution

Copyright © SAS Institute Inc. All r ights reserved.

Example #1: Dynamic Report Creation
Output

A separate PDF file
for each unique value

of STOCK

Copyright © SAS Institute Inc. All r ights reserved.

Example #2: Building Variable Attributes

• Goal: Modify SASHELP.CLASS so variable attributes and order conform to
desired specifications.

• Muggle approach: Hardcode all attributes using ATTRIB statements.

• Macro Wizard approach:

– Specify desired attributes in a data set.

– Use macro variables lists to dynamically build ATTRIB statements from data set.

Copyright © SAS Institute Inc. All r ights reserved.

Example #2: Building Variable Attributes

POS VARIABLE LABEL TYPE LEN FORMAT

1 NAME Student Name Char 7

2 AGE Age Num 3

3 SEX Gender Char 1

4 HEIGHT Height Num 8 8.2

5 WEIGHT Weight Num 8 8.2

6 BMI Body Mass Index Num 8 8.2

DESIRED ORDER AND ATTRIBUTES
CURRENT ORDER AND

ATTRIBUTES

Copyright © SAS Institute Inc. All r ights reserved.

Example #2: Building Variable Attributes
Muggle Code

options varlenchk = NOWARN;

data myclass;

 attrib name length = $7 label = 'student name';

 attrib age length = 3 label = 'age';

 attrib sex length = $1 label = 'sex';

 attrib height length = 8 label = 'height' format = 8.2;

 attrib weight length = 8 label = 'weight' format = 8.2;

 attrib bmi length = 8 label = 'body mass index'

 format = 8.2;

 set sashelp.class;

 call missing(bmi);

run;
WARNING: Multiple lengths were specified

for the variable NAME by input data set(s).

This can cause truncation of data.

Setting the VARLENCHK option to
NOWARN avoids a log warning.

Copyright © SAS Institute Inc. All r ights reserved.

Example #2: Building Variable Attributes

• Use PROC SQL to create a number of macro variables
that will capture all the various attributes

proc sql noprint;

select variable, label,

type, len, format

 into :var1 - ,

 :lbl1 - ,

 :typ1 - ,

 :len1 - ,

 :fmt1 -

 from attrs;

 %let numvars = &sqlobs;

quit;

MACRO
VARIABLE VALUE
FMT1
…
FMT6 8.2
LBL1 Student Name
…

LBL6
Body Mass
Index

LEN1 7
…
LEN6 8
TYP1 Char
…
TYP6 Num
VAR1 NAME
…
VAR6 BMI
NUMVARS 6

Macro Wizard Code – Part 1 of 2

Select variables
that will be used to

create the macro
variable lists.

Specify names of
macro variable lists

in same order as
selected variables.

Copyright © SAS Institute Inc. All r ights reserved.

Example #2: Building Variable Attributes
Macro Wizard Code – Part 2 of 2

%macro attrib(dsn =);

 data myfile;

%do i = 1 %to &numvars;

 attrib &&var&i

 %if &&len&i ne %then %do;

 %if &&typ&i = Char %then length = $&&len&i;

 %else length = &&len&i;

 %end;

 %if &&fmt&i ne %then format = &&fmt&i;

 %if &&lbl&i ne %then label = "&&lbl&i";

 ;

 %end;

 call missing(of _all_);

 set &dsn;

 run;

%mend attrib;

%attrib(dsn = SASHELP.CLASS);

%DO loop
generates
series of
ATTRIB

statements.

Ends ATTRIB statement

Initializes all variables in PDV to missing

ATTRIB must precede SET to
correctly assign attributed in PDV.

Copyright © SAS Institute Inc. All r ights reserved.

Example #2: Building Variable Attributes
Output

1 %attrib(dsn = SASHELP.CLASS);

MPRINT(ATTRIB): data myfile;

MPRINT(ATTRIB): attrib NAME length = $7 label = "Student Name" ;

MPRINT(ATTRIB): attrib AGE length = 3 label = "Age" ;

MPRINT(ATTRIB): attrib SEX length = $1 label = "Sex" ;

MPRINT(ATTRIB): attrib HEIGHT length = 8 format = 8.2 label = "Height" ;

MPRINT(ATTRIB): attrib WEIGHT length = 8 format = 8.2 label = "Weight" ;

MPRINT(ATTRIB): attrib BMI length = 8 format = 8.2 label = "Body Mass Index" ;

MPRINT(ATTRIB): call missing(of _all_);

MPRINT(ATTRIB): set SASHELP.CLASS;

MPRINT(ATTRIB): run;

proc contents data = myfile varnum;

run;

MPRINT option displays SAS code
generated by the macro language.

Use PROC CONTENTS to verify
correct attributes were assigned.

Copyright © SAS Institute Inc. All r ights reserved.

Applying Macro Magic
to Metadata

Spell #2

Copyright © SAS Institute Inc. All r ights reserved.

Incantation #2: Automatic Macro Variables

• Several automatic macro variables are created when a SAS session starts.

• Some can be quite useful for dynamic programming:

• To write current values of all automatic macro variables to the log:

%put _automatic_;

Macro variable Description Sample value

SYSDATE9 Current date in DATE9 format 17APR2024

SYSERR Return code status from last step executed 0

SYSLAST Name of last SAS data set created/modified WORK.CLASS

SYSNOBS Number of observations in last data set created/modified 19

SYSSCP Identifier of the current operating system WIN

SYSUSERID System ID of current user rwatson

Copyright © SAS Institute Inc. All r ights reserved.

Example #3: Process Only Non-Empty Data sets

• Goal: Confirm that a subset of a data set contains observations before further
processing

• Muggle approach: Don’t check first, just execute the code even with no observations.

• Macro Wizard approach: Use conditional macro logic to run a certain portion of code
only if the data subset contains a nonzero number of observations.

Macro Wizard Code

Copyright © SAS Institute Inc. All r ights reserved.

Example #3: Process Only Non-Empty Data sets

%macro myreport(indsn=,subset=);

 data reportdata;

 set &indsn;

 where ⊂

 run;

 %if &sysnobs ne 0 %then %do;

 proc print data=reportdata;

 run;

 %end;

 %else %put NOTE: The specified subset is empty.;

%mend myreport;

Macro Wizard Code

&SYSNOBS contains number of
observations in REPORTDATA

Copyright © SAS Institute Inc. All r ights reserved.

Example #3: Process Only Non-Empty Data sets

%myreport(
 indsn = sashelp.class,
 subset = %str(age=12)
)

%myreport(
 indsn = sashelp.class,
 subset = %str(age=17)
)

Output

Copyright © SAS Institute Inc. All r ights reserved.

Incantation #3: Dictionary Tables

• Dictionary tables provide information about your current SAS session

• These can facilitate dynamic programming.

• Dictionaries are accessed using the SQL procedure.

Dictionary Contains Information About:

DICTIONARY.TABLES Data sets (data set name, number of rows, number of columns, etc.)

DICTIONARY.COLUMNS Variables (variable names, type, length, format, label, etc.)

DICTIONARY.OPTIONS System options (option name, current setting, etc.)

DICTIONARY.MACROS Macro variables (name, value, scope, etc.)

DICTIONARY.TITLES Currently defined titles and footnotes (title number, title text, etc.)

DICTIONARY.FORMATS Currently defined formats (format name, type, default width, etc.)

…and several others…

Copyright © SAS Institute Inc. All r ights reserved.

Example #4: Retrieving Variable Names

• Goal: Derive last known date alive for each
subject by looking at all date variables in all data
sets within a library.

• Business Rule:

– Date variables have names ending in DTC.

– Ignore dates in certain data sets that don’t contain subject
data

• Programming Approach:

– Stack all date values together in a single data set

– Invoke PROC SUMMARY to get the last (maximum) date
value for each subject.

Copyright © SAS Institute Inc. All r ights reserved.

Example #4: Retrieving Variable Names

data alldates;

 set

 sdtm.ae(keep=usubjid aedtc rename=(aedtc = anydtc))

 sdtm.ae(keep=usubjid aestdtc rename=(aestdtc = anydtc))

 sdtm.ae(keep=usubjid aeendtc rename=(aeendtc = anydtc))

 sdtm.cm(keep=usubjid cmdtc rename=(cmdtc = anydtc))

 sdtm.cm(keep=usubjid cmstdtc rename=(cmstdtc = anydtc))

 sdtm.cm(keep=usubjid cmendtc rename=(cmendtc = anydtc))

 sdtm.dm(keep=usubjid rfstdtc rename=(rfstdtc = anydtc))

 sdtm.dm(keep=usubjid rfendtc rename=(rfendtc = anydtc))

 sdtm.dm(keep=usubjid rfxstdtc rename=(rfxstdtc= anydtc))

 sdtm.dm(keep=usubjid rfxendtc rename=(rfxendtc= anydtc))

 sdtm.dm(keep=usubjid rficdtc rename=(rficdtc = anydtc))

 sdtm.dm(keep=usubjid rfpendtc rename=(rfpendtc= anydtc))

 sdtm.dm(keep=usubjid dthdtc rename=(dthdtc = anydtc))

 sdtm.dm(keep=usubjid dmdtc rename=(dmdtc = anydtc))

 sdtm.ds(keep=usubjid dsdtc rename=(dsdtc = anydtc))

 sdtm.ds(keep=usubjid dsstdtc rename=(dsstdtc = anydtc))

Muggle Code – Slide 1 of 3

Every date
variable is
manually
coded in

a SET
statement.

This DATA step creates a data set with one
row for every date value in the entire library.

Copyright © SAS Institute Inc. All r ights reserved.

Example #4: Retrieving Variable Names

sdtm.ex(keep=usubjid exstdtc rename=(exstdtc = anydtc))

 sdtm.ex(keep=usubjid exendtc rename=(exendtc = anydtc))

 sdtm.lb(keep=usubjid lbdtc rename=(lbdtc = anydtc))
 sdtm.mh(keep=usubjid mhdtc rename=(mhdtc = anydtc))

 sdtm.mh(keep=usubjid mhstdtc rename=(mhstdtc = anydtc))

 sdtm.qs(keep=usubjid qsdtc rename=(qsdtc = anydtc))

 sdtm.sc(keep=usubjid scdtc rename=(scdtc = anydtc))

 sdtm.se(keep=usubjid sestdtc rename=(sestdtc = anydtc))

 sdtm.se(keep=usubjid seendtc rename=(seendtc = anydtc))

 sdtm.sv(keep=usubjid svstdtc rename=(svstdtc = anydtc))

 sdtm.sv(keep=usubjid svendtc rename=(svendtc = anydtc))

 sdtm.vs(keep=usubjid vsdtc rename=(vsdtc = anydtc))

 ;

 if length(anydtc)>=10 then do;

 anydt = input(anydtc,e8601da.);

 output;

 end;

 format anydt yymmdd10.;

run;

Muggle Code – Slide 2 of 3

SET
statement
continued

from
previous

slide

Convert complete
dates to numeric

date values.

Copyright © SAS Institute Inc. All r ights reserved.

Example #4: Retrieving Variable Names

proc summary data=alldates nway;

 class usubjid;

 var anydt;

 output

 out=lastdate(drop=_:)

 max(anydt)=lastdt;

run;

Muggle Code – Slide 3 of 3

Get the last date
for each subject.

Copyright © SAS Institute Inc. All r ights reserved.

Example #4: Retrieving Variable Names

proc sql;

 select memname, name

 into :ds1-, :var1-

 from dictionary.columns

 where substr(reverse(strip(name)),1,3) = 'CTD'

 and libname = 'SDTM'

 and memname in (

 select distinct memname from dictionary.columns

 where libname='SDTM' and name = 'USUBJID');

 %let numdates = &sqlobs;

quit;

Macro Wizard Code – Slide 1 of 3
Create two macro variable lists – one for
data set names, one for variable names

Only variables
with name

ending in DTC

Only from data sets
also having the

variable USUBJID

Copyright © SAS Institute Inc. All r ights reserved.

Example #4: Retrieving Variable Names

%macro get_all_study_dates;

 data alldates;

 set

 %do i = 1 %to &numdates;

 sdtm.&&ds&i(keep=usubjid &&var&i rename=(&&var&i=anydtc))

 %end;

 ;

 if length(anydtc)>=10 then do;

 anydt = input(anydtc,e8601da.);

 output;

 end;

 format anydt yymmdd10.;

 run;

%mend;

%get_all_study_dates;

Macro Wizard Code – Slide 2 of 3

Build the SET statement dynamically by
looping through the macro variable lists.

Remainder of
DATA step is the
same as before

Copyright © SAS Institute Inc. All r ights reserved.

Example #4: Retrieving Variable Names

proc summary data=alldates nway;

 class usubjid;

 var anydt;

 output

 out=lastdate(drop=_:)

 max(anydt)=lastdt;

run;

Macro Wizard Code – Slide 3 of 3

PROC SUMMARY is
the same as before

Copyright © SAS Institute Inc. All r ights reserved.

Applying Macro Magic
to Environmental Data

Spell #3

Copyright © SAS Institute Inc. All r ights reserved.

Incantation #4: The %SYSFUNC Function

• The macro language has a limited set of functions (a couple dozen)

• The DATA step has an extensive library of functions (over 400)

• The %SYSFUNC bridging function allows the use of the vast majority of
DATA step functions within the macro language

%sysfunc(datastepfunction(args)<,format>)

• Examples:

%let currdate = %sysfunc(date(),yymmdd10.);

%if %sysfunc(exist(work.mydata)) %then %do ...

Copyright © SAS Institute Inc. All r ights reserved.

Example #5: OS-specific Execution

• SAS practitioners may work in different environments.

• Muggle approach: Separate programs for each environment

– The programmer needs to maintain multiple sets of programs.

• Macro Wizard approach: Use automatic macro variables

– The code is set up so that it can still execute regardless of the environment in which it is run.

Copyright © SAS Institute Inc. All r ights reserved.

Example #5: OS-specific Execution

%macro envchk;

%if &sysscp = WIN %then %do;

 %let ppcmd = %str(dir);

%end;

%else %if &sysscp = LIN X64 %then %do;

 %let ppcmd = %str(ls -l);

%end;

%else %do;

 %put %sysfunc(compress(E RROR:)) ENVIRONMENT NOT SPECIFIED;

 %abort;

%end;

%put &=ppcmd;

/* additional SAS code */

%mend envchk;

%envchk

&SYSSCP indicates the environment
in which SAS is being run.

Successful in identifying environment
 PPCMD=dir

Not successful in identifying environment
 ERROR: ENVIRONMENT NOT SPECIFIED

 ERROR: Execution terminated by an %ABORT statement.

Copyright © SAS Institute Inc. All r ights reserved.

Example #6: Date-Specific Execution

• Portions of a program may need to be executed on specific days of the
month or days of the week.

• Muggle approach: Separate programs for each combination of days of the
month and days of the week

– The programmer needs to maintain multiple sets of programs.

• Macro Wizard approach: Use automatic macro variables

– The code is set up so that it will always execute the regularly scheduled portion but only
execute the portions that are day specific when necessary.

Copyright © SAS Institute Inc. All r ights reserved.

Example #6: Date-Specific Execution

• System macro variables can also be used to run code at specific date, day or
time

%if &sysday = Monday %then %do;

 /*** SAS Code that only runs on Monday ***/

%end;

%if %sysfunc(day("&sysdate"d)) = 1 %then %do;

 /*** SAS Code that only runs on first of month ***/

%end;

Represents the date
SAS session started

%sysfunc(date())

• System macro variables can also be used to run code at specific date, day or
time

Copyright © SAS Institute Inc. All r ights reserved.

Example #7a: User-Specific Execution

• Some programmers may not have access to certain data, and we need to
control who executes the code.

• Muggle approach: Program bombs when run by user without access to data

• Macro Wizard approach: Use automatic macro variables

Copyright © SAS Institute Inc. All r ights reserved.

Example #7a: User-Specific Execution

%macro ctrlexec;

 %if &sysuserid = gonza %then %do;

 %let msg = &sysuserid HAS PERMISSION TO EXECUTE;

 %end;

 %else %do;

 %put %sysfunc(compress(E RROR:)) &sysuserid DOES NOT HAVE

PERMISSION TO EXECUTE;

 %abort;

 %end;

 /* additional SAS code */

 %put &=msg;

%mend ctrlexec;

%ctrlexec

Allowed in the Restricted Section
 MSG=gonza HAS PERMISSION TO EXECUTE

Not allowed in the Restricted Section
 ERROR: jhorst DOES NOT HAVE PERMISSION TO EXECUTE

 ERROR: Execution terminated by an %ABORT statement.

&SYSUSERID contains the ID
of the user running the program

Copyright © SAS Institute Inc. All r ights reserved.

Example #7b: User-Specific Execution

libname ads

"P:\Users\rwatson\Box\Biometrics\StatProg\Compound\Analysis\Data";

libname ads

"P:\Users\&sysuserid.\Box\Biometrics\StatProg\Compound\Analysis

\Data";

• Some companies may use cloud storage and access is based on a user ID.

• Muggle approach: manually enter the user ID each time a path is specified

• Macro Wizard approach: use automatic macro variables

Copyright © SAS Institute Inc. All r ights reserved.

Wrap Up

Copyright © SAS Institute Inc. All r ights reserved.

Conclusion

• The SAS Macro Language provides powerful data-driven magic!

• Cast these spells to build robust programs:

– Include dynamic logic

– Avoid hard-coding

– Adapt to changes in data or computing environment

• Advantages:

– Less likely to require change

– Easier to maintain

– Greater potential for reuse

Copyright © SAS Institute Inc. All r ights reserved.

Any Questions?

josh@nestedloopconsulting.com

richann.watson@datarichconsulting.com

Copyright © SAS Institute Inc. All r ights reserved.

Recommended Resources

• Carpenter, Art. 2016. Carpenter’s Complete Guide to the SAS® Macro
Language, Third Edition. Cary, NC: SAS Institute Inc.

• SAS Institute Inc. 2016. SAS® 9.4 Macro Language: Reference, Fifth Edition.
Cary, NC: SAS Institute Inc.

	Default Section
	Slide 1: From Muggles to Macros
	Slide 2: Introduction
	Slide 3: Overview
	Slide 4: Macro Language Review
	Slide 5: Macro Processing: A Simplified Overview
	Slide 6: Macro Processing: A Visual Guide
	Slide 7: Creating Macro Variables using %LET
	Slide 8: Limitations of %LET
	Slide 10: Creating Macro Variables at Execution Time using the SQL Procedure
	Slide 11: Macro Processing: Timing is Everything!
	Slide 12: Applying Macro Magic to Data Values
	Slide 13: Incantation #1: The Macro Variable List
	Slide 14: Creating a Macro Variable List using PROC SQL
	Slide 16: Using Macro Variable Lists
	Slide 17: Using Macro Variable Lists
	Slide 18: Example #1: Dynamic Report Creation
	Slide 19: Example #1: Dynamic Report Creation
	Slide 20: Example #1: Dynamic Report Creation
	Slide 21: Example #1: Dynamic Report Creation
	Slide 22: Example #1: Dynamic Report Creation
	Slide 23: Example #2: Building Variable Attributes
	Slide 24: Example #2: Building Variable Attributes
	Slide 25: Example #2: Building Variable Attributes
	Slide 26: Example #2: Building Variable Attributes
	Slide 27: Example #2: Building Variable Attributes
	Slide 28: Example #2: Building Variable Attributes
	Slide 29: Applying Macro Magic to Metadata
	Slide 30: Incantation #2: Automatic Macro Variables
	Slide 31: Example #3: Process Only Non-Empty Data sets
	Slide 32: Example #3: Process Only Non-Empty Data sets
	Slide 33: Example #3: Process Only Non-Empty Data sets
	Slide 34: Incantation #3: Dictionary Tables
	Slide 35: Example #4: Retrieving Variable Names
	Slide 36: Example #4: Retrieving Variable Names
	Slide 37: Example #4: Retrieving Variable Names
	Slide 38: Example #4: Retrieving Variable Names
	Slide 39: Example #4: Retrieving Variable Names
	Slide 40: Example #4: Retrieving Variable Names
	Slide 41: Example #4: Retrieving Variable Names
	Slide 42: Applying Macro Magic to Environmental Data
	Slide 43: Incantation #4: The %SYSFUNC Function
	Slide 44: Example #5: OS-specific Execution
	Slide 45: Example #5: OS-specific Execution
	Slide 46: Example #6: Date-Specific Execution
	Slide 47: Example #6: Date-Specific Execution
	Slide 48: Example #7a: User-Specific Execution
	Slide 49: Example #7a: User-Specific Execution
	Slide 50: Example #7b: User-Specific Execution
	Slide 51: Wrap Up
	Slide 52: Conclusion
	Slide 53: Any Questions?
	Slide 54: Recommended Resources

